Araştırma Makalesi
BibTex RIS Kaynak Göster

Hava temizleme için çok fonksiyonlu polimer nanokompozit kaplamalı antibakteriyel filtreler

Yıl 2024, Cilt: 13 Sayı: 2, 509 - 521, 15.04.2024
https://doi.org/10.28948/ngumuh.1398545

Öz

Hava ve çevre kirliliği, endüstriyel alanlarda kullanılan ve üretilen ürünlerin doğal içerikli ve düşük enerji tüketimine sahip olmasını gerektirmektedir. Evlerde, işyerlerinde ve biyolojik canlılarla çalışılan alanlarda standart olarak kullanılan filtrelerin bakterileri temizlemesi mümkün değildir. Bu nedenle çok fonksiyonlu kompozit ve hibrit filtre kağıtlarının üretimi gerekmektedir. Çalışmada yeşil sentezlenmiş nanogümüş (AgNPs), bitki ekstraktları ve Polivinil Alkol (PVA) ile hazırlanan nanokompozit solüsyonlarla kaplanmış filtre kağıtları kullanıldı. Taramalı Elektron Mikroskobu (SEM) analizleri, gümüş nanopartiküllerin ve PVA'nın filtre kağıdı elyaflarını homojen bir şekilde kapladığını, böylece ortalama gözenek çaplarını, filtre kağıdının ticari standartlarına kıyasla yalnızca %3 oranında azalttığını gösterdi. Nanogümüş, bitki özleri ve PVA kullanılarak %36 daha yüksek patlama basıncı direncine sahip bir filtre üretildi. Filtreler nanogümüş ve bitki özleri ile kaplanarak 100.000 kata kadar yüksek etki ile antibakteriyel etki sağlanmaktadır. Bu çalışma, doğal içerikli, düşük enerji ve hammadde tüketimine sahip, düşük maliyetli, antibakteriyel ve mekanik mukavemeti yüksek filtre kağıdı üretimine olanak sağladı. Bu sayede hava ortamındaki bakteri ve kirleticiler çevreye ve aynı zamanda insan sağlığına zarar vermeden temizlenmiş olacaktır.

Proje Numarası

PYO.MUH.1908.22.037

Kaynakça

  • A. Sabirova, S. Wang, G. Falca, P-Y Hong and S.P. Nunes, Flexible isoporous air filters for high-efficiency particle capture. Polymer, 213, 123278, 2021. https://doi.org/10.1016/j.polymer.2020.123278.
  • A. Sharma, S. Raj Kumar, V.K. Katiyar and P. Gopinath, Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano-Structures & Nano-Objects, 26, 100708, 2021. https://doi.org/10.1016/j.nanoso.2021.100708.
  • L. Zhang, L. Li, L. Wang, J. Nie and G. Ma, Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Applied Surface Science, 515, 145962, 2020. https://doi.org/10.1016/j.apsusc.2020.145962.
  • H.R. Byun, S.Y. Park, E.T. Hwang, B.I. Sang, J. Min, D. Sung, W. Choi, S. Kim and J. H. Lee, Antimicrobial air filter coating with plant extracts against airborne microbes. Applied Sciences, 10, 9120, 2020. https://doi.org/10.3390/app10249120.
  • H. Liu, S. Zhang, L. Liu, J. Yu and B. Ding, A fluffy dual‐network structured nanofiber/net filter enables high‐efficiency air filtration. Advanced Functional Materials, 29, 1904108, 2019. https://doi.org/10.1002/adfm.201904108.
  • A. Wu, X. Hu, H. Ao, Z. Chen, Z. Chu, T. Jiang, X. Deng and Y. Wan, Rational design of bacterial cellulose‐based air filter with antibacterial activity for highly efficient particulate matters removal. Nano Select, 3, 201–11, 2022. https://doi.org/10.1002/nano.202100086.
  • M. Sohrabi, M. Abbasi and A. Sadighzadeh, Fabrication and evaluation of electrospun polyacrylonitrile/silver nanofiber membranes for air filtration and antibacterial activity. Polymer Bulletin (Berl), 1–19, 2022. https://doi.org/10.1007/s00289-022-04311-1.
  • C. Balagna, R. Francese, S. Perero, D. Lembo and M. Ferraris, Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surface Coating Technology, 409, 126873, 2021. https://doi.org/10.1016/j.surfcoat.2021.126873.
  • M.M. Abdelhamied, A. Atta, A.M. Abdelreheem, A.T.M. Farag and M.M. El Okr, Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. Journal of Materials Science: Materials in Electronics, 31, 22629–4, 2020. https://doi.org/10.1007/s10854-020-04774-w.
  • N.E. Kochkina and N.D. Lukin, Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. International Journal of Biological Macromolecules, 157, 377–84, 2020. https://doi.org/10.1016/j.ijbiomac.2020.04.154.
  • T.S. Soliman, M.F. Zaki, M.M. Hessien and S.I. Elkalashy, The structure and optical properties of PVA-BaTiO3 nanocomposite films. Optical Materials, 111, 110648, 2021. https://doi.org/10.1016/j.optmat.2020.110648.
  • K. Park, S. Kang, J-W Park and J. Hwang, Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. Journal of Hazardous Materials, 411, 125043, 2021. https://doi.org/10.1016/j.jhazmat.2021.125043.
  • A.K. Yontar, S. Çevik and O. Yontar, Green production of plant/collagen-based antibacterial polyvinyl alcohol (PVA) nanocomposite films. Sustainable Chemistry and Pharmacy, 33, 101119, 2023. https://doi.org/10.1016/j.scp.2023.101119.
  • F. Aggestam and A. Giurca, The art of the “green” deal: policy pathways for the EU forest strategy. Forest Policy and Economics, 128, 102456, 2021. https://doi.org/10.1016/j.forpol.2021.102456.
  • J.B. Skjærseth, Towards a European Green Deal: The evolution of EU climate and energy policy mixes. International Environmental Agreements: Politics, Law and Economics, 21, 25–41, 2021. https://doi.org/10.1007/s10784-021-09529-4.
  • S. Anchan, S. Pai and H. Sridevi, T. Varadavenkatesan, R. Vinayagam and R. Selvaraj, Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatalysis and Agricultural Biotechnology, 20, 101251, 2019. https://doi.org/10.1016/j.bcab.2019.101251.
  • R. Ahmad, Green Synthesis (Using Plant Extracts) of Ag and Au Nanoparticles. GJN 2017. https://doi.org/10.19080/GJN.2017.02.555589.
  • A.K. Yontar and S. Çevik, Effects of plant extracts and green-synthesized silver nanoparticles on the polyvinyl alcohol (PVA) nanocomposite films. Arabian Journal of Science and Engineering, 5, 1, 2023. https://doi.org/10.1007/s13369-023-07643-w.
  • A.K. Yontar, S. Avcioğlu and S. Çevik, Nature-based nanocomposites for adsorption and visible light photocatalytic degradation of methylene blue dye. Journal of Cleaner Production, 380, 135070, 2022. https://doi.org/10.1016/j.jclepro.2022.135070.
  • B. Farinon, R. Molinari, L. Costantini and N. Merendino, The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients, 12, 1935, 2020. https://doi.org/10.3390/nu12071935.
  • J. Zvezdanović, S. Petrović, S. Savić, D. Cvetković, L. Stanojević, J. Stanojević and A. Lazarević, Phenolics and mineral content in St. John’s wort infusions from Serbia origin: An HPLC and ICP-OES study. Chemical Paper, 75, 2807–17, 2021. https://doi.org/10.1007/s11696-021-01521-1.
  • H. Hajlaoui, S. Arraouadi, E. Noumi, K. Aouadi, M. Adnan, M.A. Khan, A. Kadri and M. Snoussi, Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum Carvi L. and Coriandrum Sativum L. Essential Oils Alone and in Combination. Molecules, 2021. https://doi.org/10.3390/molecules26123625.
  • O. Prakash, G.N. Singh, R.M. Singh, S. Madan and S.C. Mathur, Interactions of herbal extract combinations against free radical scavenging activity. Pharmaceutical Biology, 47, 729–33, 2009. https://doi.org/10.1080/13880200902939267.
  • C.T. Che, Z.J. Wang, M. S. S. Chow and C.W.K. Lam, Herb-herb combination for therapeutic enhancement and advancement: Theory, practice and future perspectives. Molecules, 18, 5125–41, 2013. https://doi.org/10.3390/molecules18055125.
  • R.H. Ahmed and D.E. Mustafa, Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letter, 10, 1–14, 2020. https://doi.org/10.1007/s40089-019-00291-9.
  • F. Jalilian, A. Chahardoli, K. Sadrjavadi, A. Fattahi and Y. hokoohinia, Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31, 1323–32, 2020. https://doi.org/10.1016/j.apt.2020.01.011.
  • T. Varadavenkatesan, R. Selvaraj and R. Vinayagam, Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. International Journal of Environmental Science and Technology, 16, 2395–404, 2019. https://doi.org/10.1007/s13762-018-1850-4.
  • A.K. Yontar and S. Çevik, Electrospray deposited plant-based polymer nanocomposite coatings with enhanced antibacterial activity for Ti-6Al-4V implants. Progress in Organic Coatings, 189, 107965, 2024. https://doi.org/10.1016/j.porgcoat.2023.107965 .
  • A.K. Yontar and S. Çevik, Bio-Synthesized Silver Nanoparticles Using Cannabis Sativa Seed Extracts and Its Anticancer Effects. Plasmonics, 160, 110313, 2023. https://doi.org/10.1007/s11468-023-02142-y.
  • A.K. Yontar, S. Çevik and Ş. Akbay, Production of environmentally friendly and antibacterial MDF (Medium-density fiberboard) surfaces with green synthesized nano silvers. Inorganic Chemistry Communications, 159, 111865, 2024. https://doi.org/10.1016/j.inoche.2023.111865.
  • N. Srikhao, P. Kasemsiri, A. Ounkaew, N. Lorwanishpaisarn, M. Okhawilai, U. Pongsa, S. Hiziroglu and P. Chindaprasirt, Bioactive nanocomposite film based on cassava starch/polyvinyl alcohol containing green synthesized silver nanoparticles. Journal of Polymers and the Environment, 29, 672–84, 2021. https://doi.org/10.1007/s10924-020-01909-2.
  • S.S. Bulla, R.F. Bhajantri and C. Chavan, Optical and structural properties of biosynthesized silver nanoparticle encapsulated PVA (Ag–PVA) films. Journal of Inorganic and Organomettalic Polymers and Materials, 31, 2368–80, 2021. https://doi.org/10.1007/s10904-021-01909-2.
  • B.O. Aljohny, A.A.A. Almaliki, Y. Anwar, M. Ul-Islam and T. Kamal, Antibacterial and catalytic performance of green synthesized silver nanoparticles embedded in crosslinked PVA sheet. Journal of Polymers and the Environment, 29, 3252–62, 2021. https://doi.org/10.1007/s10924-021-02110-9.
  • H.M. Ragab and A. Rajeh, Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. Journal of Materials Science: Materials in Electronics, 31, 16780–92, 2020. https://doi.org/10.1007/s10854-020-04233-6.
  • Y.Z.N. Htwe and M. Mariatti, Fabrication and characterization of silver nanoparticles/PVA composites for flexible electronic application. In: 3rd International Postgraduate Conference on Materials, Minerals & Polymer (MAMIP), 20046, 2020. https://doi.org/10.1063/5.0016135.
  • A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–6, 1966. https://doi.org/10.1093/ajcp/45.4_ts.493.
  • Y. Li, Y. Luan, W. Liu, C. Wang, H. Cao and P. Liu, Cellulose nanofibrils/polyvinyl alcohol/silver nanoparticles composite hydrogel: Preparation and its catalyst degradation performance of cationic dye. Journal of Applied Polymer Science, 139, 52246, 2022. https://doi.org/10.1002/app.52246.
  • Z.B. Mokhtari-Hosseini, A. Hatamian-Zarmi, S. Mahdizadeh, B. Ebrahimi-Hosseinzadeh, H. Alvandi and S. Kianirad, Environmentally-friendly synthesis of Ag nanoparticles by fusarium sporotrichioides for the production of PVA/Bentonite/Ag composite nanofibers. Journal of Polymer and the Environment, 8, 1, 2022. https://doi.org/10.1007/s10924-022-02509-y.
  • N. Valarmathi, K. Sasikumar, S. Sumathi, A. Das and A.K. Jaiswal, In vitro biological activity of Zn substituted hydroxyapatite/ polyvinyl alcohol composite for orthopaedic applications. Materials Today Communications, 26, 102025, 2021. https://doi.org/10.1016/j.mtcomm.2021.102025.
  • J. Guo, Q. Liu, J. Cheng, X. Fu, Y. Zhang, H. Yang, Hemostatic cotton based on biocompatible poly(vinyl alcohol)/soluble starch-fish skin collagen composites. Materials Today Communications, 32, 103812, 2022. https://doi.org/10.1016/j.mtcomm.2022.103812.
  • A.B. García-Hernández, E. Morales-Sánchez, B.M. Berdeja-Martínez, M. Escamilla-García, M.P. Salgado-Cruz, M. Rentería-Ortega, R. R. Farrera-Rebollo, M. A. Vega-Cuellar and G. Calderon-Dominguez, PVA-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of hypericum perforatum for potential use as wound dressing: fabrication and characterization. Polymers (Basel), 14, 10, 2022. https://doi.org/10.3390/polym14101981.
  • P.E. Antezana, S. Municoy, C.J: Pérez and M.F. Desimone, Collagen hydrogels loaded with silver nanoparticles and cannabis sativa oil. Antibiotics (Basel), 10, 11, 2021. https://doi.org/10.3390/antibiotics10111420.
  • Y. He, H. Li, X. Fei and L. Peng, Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate Polymers, 252, 117156, 2021. https://doi.org/10.1016/j.carbpol.2020.117156.
  • M.F. Tahir, M.Z. Khan, S. Attacha, N. Asim, M. Tayyab, A. Ali, J. Militky and B. Tomkova, The comparative performance of phytochemicals, green synthesised silver nanoparticles, and green synthesised copper nanoparticles-loaded textiles to avoid nosocomial infections. Nanomaterials (Basel), 12, 20, 2022. https://doi.org/10.3390/nano12203629.
  • S. Xie, B. Xu, L. Yuan, Y. Zhao, N. Ma, Y. Wang, D. Liu, A. Xiang, Y. Ouyang and H. Tian, Electrospun hydrophobic nanofiber films from biodegradable zein and curcumin with ımproved tensile strength for air filtration. Journal of Polymers ant the Environment, 31, 287–96, 2023. https://doi.org/10.1007/s10924-022-02564-5.
  • M. Samir, R.A. Geioushy, S. El-Sherbiny and O.A. Fouad, Enhancing the anti-ageing, antimicrobial activity and mechanical properties of surface-coated paper by Ag@TiO2-modified nanopigments. Environmental Science and Pollution Research International, 29, 72515–27, 2022. https://doi.org/10.1007/s11356-022-20935-2.
  • D. Cheng, Y. Zhang, Y. Liu, X. Bai, J. Ran, S. Bi, Z. Deng, X. Tang, J. Wu, G. Cai and X. Wang, Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application. Materials Today Communications, 25, 101467, 2020. https://doi.org/10.1016/j.mtcomm.2020.101467 .
  • Y. Xiao, Y. Wang, W. Zhu, J. Yao, C. Sun, J. Militky, M. Venkataraman and G. Zhu, Development of tree-like nanofibrous air filter with durable antibacterial property. Separation and Purification Technology, 259, 118135, 2021. https://doi.org/10.1016/j.seppur.2020.118135.
  • L. Wang, C. Hu and L. Shao. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227-1249, 2017. https://doi.org/10.2147/IJN.S121956.

Multifunctional polymer nanocomposite coated antibacterial filters for air-purification

Yıl 2024, Cilt: 13 Sayı: 2, 509 - 521, 15.04.2024
https://doi.org/10.28948/ngumuh.1398545

Öz

Products used and produced in industrial locations must have natural ingredients and minimal energy usage due to air and environmental pollution. It is impossible for standard filters to clean bacterias in homes, workplaces and areas working with biological creatures. Therefore, the production of multifunctional nanocomposite and hybrid filter papers is necessary. In the study, filter papers coated with nanocomposite solutions prepared from green synthesized nanosilver (AgNPs) with plant extracts and Polyvinyl Alcohol (PVA). Scanning Electron Microscope (SEM) analyses showed that silver nanoparticles and PVA homogeneously coated the filter paper fibers, thereby reducing the average pore diameters by only 3% compared to commercial standards of filter paper. A filter with 36% higher burst pressure resistance was produced by nanosilver, plant extracts and PVA modification. The antibacterial effect is provided to the filters with a high effect of up to 10000 times, by coating them with nanosilver and plant extracts. This study made it possible to produce filter paper with natural ingredients and at low cost, reducing energy and raw material consumption, with high antibacterial effect and mechanical strength. In this way, bacteria and pollutants in the air will be cleaned without harming the environment and human health.

Etik Beyan

The authors claim that they have no known financial conflicts of interest or close personal relationships that would appear to have affected the research revealed in this study.

Destekleyen Kurum

ondokuzmayıs üniversity

Proje Numarası

PYO.MUH.1908.22.037

Teşekkür

Performance tests in this study were performed at M.C.Filter Ltd. in Samsun/Turkey.

Kaynakça

  • A. Sabirova, S. Wang, G. Falca, P-Y Hong and S.P. Nunes, Flexible isoporous air filters for high-efficiency particle capture. Polymer, 213, 123278, 2021. https://doi.org/10.1016/j.polymer.2020.123278.
  • A. Sharma, S. Raj Kumar, V.K. Katiyar and P. Gopinath, Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano-Structures & Nano-Objects, 26, 100708, 2021. https://doi.org/10.1016/j.nanoso.2021.100708.
  • L. Zhang, L. Li, L. Wang, J. Nie and G. Ma, Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Applied Surface Science, 515, 145962, 2020. https://doi.org/10.1016/j.apsusc.2020.145962.
  • H.R. Byun, S.Y. Park, E.T. Hwang, B.I. Sang, J. Min, D. Sung, W. Choi, S. Kim and J. H. Lee, Antimicrobial air filter coating with plant extracts against airborne microbes. Applied Sciences, 10, 9120, 2020. https://doi.org/10.3390/app10249120.
  • H. Liu, S. Zhang, L. Liu, J. Yu and B. Ding, A fluffy dual‐network structured nanofiber/net filter enables high‐efficiency air filtration. Advanced Functional Materials, 29, 1904108, 2019. https://doi.org/10.1002/adfm.201904108.
  • A. Wu, X. Hu, H. Ao, Z. Chen, Z. Chu, T. Jiang, X. Deng and Y. Wan, Rational design of bacterial cellulose‐based air filter with antibacterial activity for highly efficient particulate matters removal. Nano Select, 3, 201–11, 2022. https://doi.org/10.1002/nano.202100086.
  • M. Sohrabi, M. Abbasi and A. Sadighzadeh, Fabrication and evaluation of electrospun polyacrylonitrile/silver nanofiber membranes for air filtration and antibacterial activity. Polymer Bulletin (Berl), 1–19, 2022. https://doi.org/10.1007/s00289-022-04311-1.
  • C. Balagna, R. Francese, S. Perero, D. Lembo and M. Ferraris, Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surface Coating Technology, 409, 126873, 2021. https://doi.org/10.1016/j.surfcoat.2021.126873.
  • M.M. Abdelhamied, A. Atta, A.M. Abdelreheem, A.T.M. Farag and M.M. El Okr, Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. Journal of Materials Science: Materials in Electronics, 31, 22629–4, 2020. https://doi.org/10.1007/s10854-020-04774-w.
  • N.E. Kochkina and N.D. Lukin, Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. International Journal of Biological Macromolecules, 157, 377–84, 2020. https://doi.org/10.1016/j.ijbiomac.2020.04.154.
  • T.S. Soliman, M.F. Zaki, M.M. Hessien and S.I. Elkalashy, The structure and optical properties of PVA-BaTiO3 nanocomposite films. Optical Materials, 111, 110648, 2021. https://doi.org/10.1016/j.optmat.2020.110648.
  • K. Park, S. Kang, J-W Park and J. Hwang, Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. Journal of Hazardous Materials, 411, 125043, 2021. https://doi.org/10.1016/j.jhazmat.2021.125043.
  • A.K. Yontar, S. Çevik and O. Yontar, Green production of plant/collagen-based antibacterial polyvinyl alcohol (PVA) nanocomposite films. Sustainable Chemistry and Pharmacy, 33, 101119, 2023. https://doi.org/10.1016/j.scp.2023.101119.
  • F. Aggestam and A. Giurca, The art of the “green” deal: policy pathways for the EU forest strategy. Forest Policy and Economics, 128, 102456, 2021. https://doi.org/10.1016/j.forpol.2021.102456.
  • J.B. Skjærseth, Towards a European Green Deal: The evolution of EU climate and energy policy mixes. International Environmental Agreements: Politics, Law and Economics, 21, 25–41, 2021. https://doi.org/10.1007/s10784-021-09529-4.
  • S. Anchan, S. Pai and H. Sridevi, T. Varadavenkatesan, R. Vinayagam and R. Selvaraj, Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatalysis and Agricultural Biotechnology, 20, 101251, 2019. https://doi.org/10.1016/j.bcab.2019.101251.
  • R. Ahmad, Green Synthesis (Using Plant Extracts) of Ag and Au Nanoparticles. GJN 2017. https://doi.org/10.19080/GJN.2017.02.555589.
  • A.K. Yontar and S. Çevik, Effects of plant extracts and green-synthesized silver nanoparticles on the polyvinyl alcohol (PVA) nanocomposite films. Arabian Journal of Science and Engineering, 5, 1, 2023. https://doi.org/10.1007/s13369-023-07643-w.
  • A.K. Yontar, S. Avcioğlu and S. Çevik, Nature-based nanocomposites for adsorption and visible light photocatalytic degradation of methylene blue dye. Journal of Cleaner Production, 380, 135070, 2022. https://doi.org/10.1016/j.jclepro.2022.135070.
  • B. Farinon, R. Molinari, L. Costantini and N. Merendino, The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients, 12, 1935, 2020. https://doi.org/10.3390/nu12071935.
  • J. Zvezdanović, S. Petrović, S. Savić, D. Cvetković, L. Stanojević, J. Stanojević and A. Lazarević, Phenolics and mineral content in St. John’s wort infusions from Serbia origin: An HPLC and ICP-OES study. Chemical Paper, 75, 2807–17, 2021. https://doi.org/10.1007/s11696-021-01521-1.
  • H. Hajlaoui, S. Arraouadi, E. Noumi, K. Aouadi, M. Adnan, M.A. Khan, A. Kadri and M. Snoussi, Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum Carvi L. and Coriandrum Sativum L. Essential Oils Alone and in Combination. Molecules, 2021. https://doi.org/10.3390/molecules26123625.
  • O. Prakash, G.N. Singh, R.M. Singh, S. Madan and S.C. Mathur, Interactions of herbal extract combinations against free radical scavenging activity. Pharmaceutical Biology, 47, 729–33, 2009. https://doi.org/10.1080/13880200902939267.
  • C.T. Che, Z.J. Wang, M. S. S. Chow and C.W.K. Lam, Herb-herb combination for therapeutic enhancement and advancement: Theory, practice and future perspectives. Molecules, 18, 5125–41, 2013. https://doi.org/10.3390/molecules18055125.
  • R.H. Ahmed and D.E. Mustafa, Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letter, 10, 1–14, 2020. https://doi.org/10.1007/s40089-019-00291-9.
  • F. Jalilian, A. Chahardoli, K. Sadrjavadi, A. Fattahi and Y. hokoohinia, Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31, 1323–32, 2020. https://doi.org/10.1016/j.apt.2020.01.011.
  • T. Varadavenkatesan, R. Selvaraj and R. Vinayagam, Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. International Journal of Environmental Science and Technology, 16, 2395–404, 2019. https://doi.org/10.1007/s13762-018-1850-4.
  • A.K. Yontar and S. Çevik, Electrospray deposited plant-based polymer nanocomposite coatings with enhanced antibacterial activity for Ti-6Al-4V implants. Progress in Organic Coatings, 189, 107965, 2024. https://doi.org/10.1016/j.porgcoat.2023.107965 .
  • A.K. Yontar and S. Çevik, Bio-Synthesized Silver Nanoparticles Using Cannabis Sativa Seed Extracts and Its Anticancer Effects. Plasmonics, 160, 110313, 2023. https://doi.org/10.1007/s11468-023-02142-y.
  • A.K. Yontar, S. Çevik and Ş. Akbay, Production of environmentally friendly and antibacterial MDF (Medium-density fiberboard) surfaces with green synthesized nano silvers. Inorganic Chemistry Communications, 159, 111865, 2024. https://doi.org/10.1016/j.inoche.2023.111865.
  • N. Srikhao, P. Kasemsiri, A. Ounkaew, N. Lorwanishpaisarn, M. Okhawilai, U. Pongsa, S. Hiziroglu and P. Chindaprasirt, Bioactive nanocomposite film based on cassava starch/polyvinyl alcohol containing green synthesized silver nanoparticles. Journal of Polymers and the Environment, 29, 672–84, 2021. https://doi.org/10.1007/s10924-020-01909-2.
  • S.S. Bulla, R.F. Bhajantri and C. Chavan, Optical and structural properties of biosynthesized silver nanoparticle encapsulated PVA (Ag–PVA) films. Journal of Inorganic and Organomettalic Polymers and Materials, 31, 2368–80, 2021. https://doi.org/10.1007/s10904-021-01909-2.
  • B.O. Aljohny, A.A.A. Almaliki, Y. Anwar, M. Ul-Islam and T. Kamal, Antibacterial and catalytic performance of green synthesized silver nanoparticles embedded in crosslinked PVA sheet. Journal of Polymers and the Environment, 29, 3252–62, 2021. https://doi.org/10.1007/s10924-021-02110-9.
  • H.M. Ragab and A. Rajeh, Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. Journal of Materials Science: Materials in Electronics, 31, 16780–92, 2020. https://doi.org/10.1007/s10854-020-04233-6.
  • Y.Z.N. Htwe and M. Mariatti, Fabrication and characterization of silver nanoparticles/PVA composites for flexible electronic application. In: 3rd International Postgraduate Conference on Materials, Minerals & Polymer (MAMIP), 20046, 2020. https://doi.org/10.1063/5.0016135.
  • A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–6, 1966. https://doi.org/10.1093/ajcp/45.4_ts.493.
  • Y. Li, Y. Luan, W. Liu, C. Wang, H. Cao and P. Liu, Cellulose nanofibrils/polyvinyl alcohol/silver nanoparticles composite hydrogel: Preparation and its catalyst degradation performance of cationic dye. Journal of Applied Polymer Science, 139, 52246, 2022. https://doi.org/10.1002/app.52246.
  • Z.B. Mokhtari-Hosseini, A. Hatamian-Zarmi, S. Mahdizadeh, B. Ebrahimi-Hosseinzadeh, H. Alvandi and S. Kianirad, Environmentally-friendly synthesis of Ag nanoparticles by fusarium sporotrichioides for the production of PVA/Bentonite/Ag composite nanofibers. Journal of Polymer and the Environment, 8, 1, 2022. https://doi.org/10.1007/s10924-022-02509-y.
  • N. Valarmathi, K. Sasikumar, S. Sumathi, A. Das and A.K. Jaiswal, In vitro biological activity of Zn substituted hydroxyapatite/ polyvinyl alcohol composite for orthopaedic applications. Materials Today Communications, 26, 102025, 2021. https://doi.org/10.1016/j.mtcomm.2021.102025.
  • J. Guo, Q. Liu, J. Cheng, X. Fu, Y. Zhang, H. Yang, Hemostatic cotton based on biocompatible poly(vinyl alcohol)/soluble starch-fish skin collagen composites. Materials Today Communications, 32, 103812, 2022. https://doi.org/10.1016/j.mtcomm.2022.103812.
  • A.B. García-Hernández, E. Morales-Sánchez, B.M. Berdeja-Martínez, M. Escamilla-García, M.P. Salgado-Cruz, M. Rentería-Ortega, R. R. Farrera-Rebollo, M. A. Vega-Cuellar and G. Calderon-Dominguez, PVA-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of hypericum perforatum for potential use as wound dressing: fabrication and characterization. Polymers (Basel), 14, 10, 2022. https://doi.org/10.3390/polym14101981.
  • P.E. Antezana, S. Municoy, C.J: Pérez and M.F. Desimone, Collagen hydrogels loaded with silver nanoparticles and cannabis sativa oil. Antibiotics (Basel), 10, 11, 2021. https://doi.org/10.3390/antibiotics10111420.
  • Y. He, H. Li, X. Fei and L. Peng, Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate Polymers, 252, 117156, 2021. https://doi.org/10.1016/j.carbpol.2020.117156.
  • M.F. Tahir, M.Z. Khan, S. Attacha, N. Asim, M. Tayyab, A. Ali, J. Militky and B. Tomkova, The comparative performance of phytochemicals, green synthesised silver nanoparticles, and green synthesised copper nanoparticles-loaded textiles to avoid nosocomial infections. Nanomaterials (Basel), 12, 20, 2022. https://doi.org/10.3390/nano12203629.
  • S. Xie, B. Xu, L. Yuan, Y. Zhao, N. Ma, Y. Wang, D. Liu, A. Xiang, Y. Ouyang and H. Tian, Electrospun hydrophobic nanofiber films from biodegradable zein and curcumin with ımproved tensile strength for air filtration. Journal of Polymers ant the Environment, 31, 287–96, 2023. https://doi.org/10.1007/s10924-022-02564-5.
  • M. Samir, R.A. Geioushy, S. El-Sherbiny and O.A. Fouad, Enhancing the anti-ageing, antimicrobial activity and mechanical properties of surface-coated paper by Ag@TiO2-modified nanopigments. Environmental Science and Pollution Research International, 29, 72515–27, 2022. https://doi.org/10.1007/s11356-022-20935-2.
  • D. Cheng, Y. Zhang, Y. Liu, X. Bai, J. Ran, S. Bi, Z. Deng, X. Tang, J. Wu, G. Cai and X. Wang, Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application. Materials Today Communications, 25, 101467, 2020. https://doi.org/10.1016/j.mtcomm.2020.101467 .
  • Y. Xiao, Y. Wang, W. Zhu, J. Yao, C. Sun, J. Militky, M. Venkataraman and G. Zhu, Development of tree-like nanofibrous air filter with durable antibacterial property. Separation and Purification Technology, 259, 118135, 2021. https://doi.org/10.1016/j.seppur.2020.118135.
  • L. Wang, C. Hu and L. Shao. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227-1249, 2017. https://doi.org/10.2147/IJN.S121956.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Bilimi ve Teknolojileri, Polimer Bilimi ve Teknolojileri, Nanomalzemeler, Nanoüretim
Bölüm Araştırma Makaleleri
Yazarlar

Arife Kübra Yontar 0000-0003-1486-9332

Onur Yontar 0000-0003-0094-7133

Sinem Çevik 0000-0002-3506-7892

Proje Numarası PYO.MUH.1908.22.037
Erken Görünüm Tarihi 23 Şubat 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 30 Kasım 2023
Kabul Tarihi 16 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Yontar, A. K., Yontar, O., & Çevik, S. (2024). Multifunctional polymer nanocomposite coated antibacterial filters for air-purification. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 509-521. https://doi.org/10.28948/ngumuh.1398545
AMA Yontar AK, Yontar O, Çevik S. Multifunctional polymer nanocomposite coated antibacterial filters for air-purification. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):509-521. doi:10.28948/ngumuh.1398545
Chicago Yontar, Arife Kübra, Onur Yontar, ve Sinem Çevik. “Multifunctional Polymer Nanocomposite Coated Antibacterial Filters for Air-Purification”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 509-21. https://doi.org/10.28948/ngumuh.1398545.
EndNote Yontar AK, Yontar O, Çevik S (01 Nisan 2024) Multifunctional polymer nanocomposite coated antibacterial filters for air-purification. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 509–521.
IEEE A. K. Yontar, O. Yontar, ve S. Çevik, “Multifunctional polymer nanocomposite coated antibacterial filters for air-purification”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 509–521, 2024, doi: 10.28948/ngumuh.1398545.
ISNAD Yontar, Arife Kübra vd. “Multifunctional Polymer Nanocomposite Coated Antibacterial Filters for Air-Purification”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 509-521. https://doi.org/10.28948/ngumuh.1398545.
JAMA Yontar AK, Yontar O, Çevik S. Multifunctional polymer nanocomposite coated antibacterial filters for air-purification. NÖHÜ Müh. Bilim. Derg. 2024;13:509–521.
MLA Yontar, Arife Kübra vd. “Multifunctional Polymer Nanocomposite Coated Antibacterial Filters for Air-Purification”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 509-21, doi:10.28948/ngumuh.1398545.
Vancouver Yontar AK, Yontar O, Çevik S. Multifunctional polymer nanocomposite coated antibacterial filters for air-purification. NÖHÜ Müh. Bilim. Derg. 2024;13(2):509-21.

 23135