Araştırma Makalesi
BibTex RIS Kaynak Göster

Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi

Yıl 2024, Cilt: 13 Sayı: 2, 632 - 638, 15.04.2024
https://doi.org/10.28948/ngumuh.1415695

Öz

Elektrikli Araçların (EA) kablosuz olarak şarj edilmesi için en uygun yöntem, enerjiyi yakın alanda aktaran manyetik rezonans kuplajıdır. Bu çalışmada, kalite faktörünün bir EA'nın kablosuz şarj sistemi üzerindeki etkisi araştırılmıştır. 85 kHz frekans, 20 kW güç ve 150 mm bobinler arası mesafe belirlendikten sonra kalite faktörüne göre Kablosuz Güç Aktarımı (KGA) sistem tasarımı gerçekleştirilmiştir. Kalite faktörünün verime, kritik hava aralığına ve kapasitörlerdeki gerilime etki ettiği görülmüştür. Kalite faktörü arttıkça kritik hava boşluğu da artar ve daha uzun mesafelere iletim verimli bir şekilde gerçekleştirilebilir. Ancak bu faktörün artmasına bağlı olarak kapasitörler üzerindeki gerilim stresi de artar. Çalışmada kalite faktörüne göre kritik hava boşluğu belirlenmiştir. Yüksek kalite faktörü, yüksek hava boşluklarında verimliliği arttırsa da hava boşluklarının yakın olduğu uygulamalarda verimliliği düşürmektedir. Aslında endüktansı artırarak kalite faktörünü arttırmak iç direncin artması anlamına gelir ve bu durumun maksimum verimliliği azalttığı görülmüştür. Bu çalışmada Q faktörünün iletim gücü ve iletim verimliliği üzerindeki etkileri deneysel ve benzetim aracılığıyla araştırılmıştır.

Kaynakça

  • W. Hong, S. Lee and H. Lee, Sensorless control of series-series tuned inductive power transfer system, IEEE Transactions on Industrial Electronics, 70(10), 10578-10587, 2023. https://doi.org/10.1109/TIE.2022.3220885.
  • M. Chang, Metamaterial adaptive frequency switch rectifier circuit for wireless power transfer system. IEEE Transactions on Industrial Electronics, 70(10), 10710-10719, 2023, https://doi.org/10.1109/TIE.2022.3220908.
  • R. Xue, K. Cheng and M. Je, High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 4, 2012. https://doi.org/10.1109/TCSI.2012.2209297.
  • A. Bharadwaj, A. Sharma and C. R. Chandupatla, A switched modular multi-coil array transmitter pad with coil rectenna sensors to improve lateral misalignment tolerance in wireless power charging of drone systems. IEEE Transactions on Intelligent Transportation Systems, 24, 2, 2023. https://doi.org/10.1109/TITS.2022.3220793.
  • M. Moghaddami, A. Sundararajan and A. Sarwat, A power frequency controller with resonance frequency tracking capability for inductive power transfer systems. IEEE Trans Ind Appl 54(2), 1773–1783 2018. https://doi.org/10.1109/TIA.2017.2779425.
  • Yang. S, Deng. X, Lu. J, Wu. Z and Du. K, Light-load efficiency optimization for an LCC-parallel compensated inductive power transfer battery charger. Electron (Switz) 9(12), 1–13, 2020. https://doi.org/10.3390/electronics9122080
  • Z. Yi, M. Li, B. Muneer and Q. Zhu, High-efficiency mid-range inductive power transfer employing alternative-winding coils. IEEE Transactions on Power Electronics, 34(7), 6706-6721, 2019. https://doi.org/10.1109/TPEL.2018.2872047.
  • Y. Yamada and T. Imura, An efficiency optimization method of static wireless power transfer coreless coils for electric vehicles in the 85 kHz band using numerical analysis. IEEJ, Transactions on Electrical and Electronic Engineering, 17(10), 1506-1516, 2020. https://doi.org/10.1002/tee.23661
  • Y. Yamada, K. Sasaki, T. Imura and Y. Hori, Design method of coils for dynamic wireless power transfer considering average transmission power and installation rate. IEEE Southern Power Electronics Conference (SPEC), Kigali, Rwanda, 1-8, 2021. https://doi.org/10.1109/SPEC52827.2021.9709485.
  • I. Fatih ve K. Orhan, Impedance analysis and variable capacity array application for wireless energy-transfer system via coupled magnetic resonances, Gazi University Journal of Science Part C: Design and Technology, 8(4), 1005-1020, .2020.
  • N. Rasekh, J. Wang and X. Yuan, In-situ measurement and investigation of winding loss in high-frequency cored transformers under large-signal condition. IEEE Open Journal of Industry Applications, 3, 164-177, 2022, https://doi.org/10.1109/OJIA.2022.3193584.
  • L. Feng, Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation. Applied Energy, 323, 119631, 2022. https://doi.org/10.1016/j.apenergy.2022.119631
  • Y. Özüpak, Analysis of the model designed for magnetic resonance based wireless power transfer using FEM. Journal of Engineering Research, 11, 3, 2023. https://doi.org/10.36909/jer.17631
  • J. Park, 22 kW high-efficiency IPT system for wireless charging of electric vehicles. Journal of Power Electron, 23, 374–386, 2023. https://doi.org/10.1007/s43236-022-00569-w
  • H. Wang, A special magnetic coupling structure design for wireless power transfer system. IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), 1-2, 2020. https://doi.org/10.1109/CEFC55061.2022.9940745.
  • I. Hussain and D.K. Woo, Self-inductance calculation of the archimedean spiral coil. Energies. 15, 253, 2022 https://doi.org/10.3390/en15010253.
  • SAE, Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology, standard No: J2954_202010, 2020. https://www.sae.org/standards/content/j2954_202010/
  • International commission on non-ionizing radiation protection (ICNIRP), Health Phys., 99(6), 818, 2020. https://www.icnirp.org/en/activities/news/news-article/rf-guidelines-2020-published.html
  • IEEE, Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz," in IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019) , 4, 1-312, 2019. https://doi.org/10.1109/IEEESTD.2019.8859679.
  • Y. Özüpak, Analysis of the parameters affecting the efficiency of the wireless power transmission system designed for new generation electric vehicles. International Journal of Automotive Technology, 24, 1675–1680, 2023. https://doi.org/10.1007/s12239-023-0135-1

Analysis of Q factor effect for wireless power transfer system

Yıl 2024, Cilt: 13 Sayı: 2, 632 - 638, 15.04.2024
https://doi.org/10.28948/ngumuh.1415695

Öz

The most suitable method for wireless charging of Electric Vehicles (EVs) is magnetic resonance coupling, which transfers energy in the near field. In this study, the effect of quality factor on the wireless charging system of an EV is investigated. After determining 85 kHz frequency, 20 kW power and 150 mm inter-coil distance, the Wireless Power Transfer (WPT) system design was realized according to the quality factor. It was observed that the quality factor affects the efficiency, critical air gap and voltage on capacitors. As the quality factor increases, the critical air gap increases and longer distances can be transmitted efficiently. However, as this factor increases, the voltage stress on the capacitors also increases. In the study, the critical air gap was determined according to the quality factor. Although high quality factor increases efficiency at high air gaps, it decreases efficiency in applications where air gaps are close. In fact, increasing the quality factor by increasing the inductance means increasing the internal resistance and this has been found to reduce the maximum efficiency. In this study, the effects of Q factor on transmission power and transmission efficiency are investigated experimentally and through simulation.

Kaynakça

  • W. Hong, S. Lee and H. Lee, Sensorless control of series-series tuned inductive power transfer system, IEEE Transactions on Industrial Electronics, 70(10), 10578-10587, 2023. https://doi.org/10.1109/TIE.2022.3220885.
  • M. Chang, Metamaterial adaptive frequency switch rectifier circuit for wireless power transfer system. IEEE Transactions on Industrial Electronics, 70(10), 10710-10719, 2023, https://doi.org/10.1109/TIE.2022.3220908.
  • R. Xue, K. Cheng and M. Je, High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 4, 2012. https://doi.org/10.1109/TCSI.2012.2209297.
  • A. Bharadwaj, A. Sharma and C. R. Chandupatla, A switched modular multi-coil array transmitter pad with coil rectenna sensors to improve lateral misalignment tolerance in wireless power charging of drone systems. IEEE Transactions on Intelligent Transportation Systems, 24, 2, 2023. https://doi.org/10.1109/TITS.2022.3220793.
  • M. Moghaddami, A. Sundararajan and A. Sarwat, A power frequency controller with resonance frequency tracking capability for inductive power transfer systems. IEEE Trans Ind Appl 54(2), 1773–1783 2018. https://doi.org/10.1109/TIA.2017.2779425.
  • Yang. S, Deng. X, Lu. J, Wu. Z and Du. K, Light-load efficiency optimization for an LCC-parallel compensated inductive power transfer battery charger. Electron (Switz) 9(12), 1–13, 2020. https://doi.org/10.3390/electronics9122080
  • Z. Yi, M. Li, B. Muneer and Q. Zhu, High-efficiency mid-range inductive power transfer employing alternative-winding coils. IEEE Transactions on Power Electronics, 34(7), 6706-6721, 2019. https://doi.org/10.1109/TPEL.2018.2872047.
  • Y. Yamada and T. Imura, An efficiency optimization method of static wireless power transfer coreless coils for electric vehicles in the 85 kHz band using numerical analysis. IEEJ, Transactions on Electrical and Electronic Engineering, 17(10), 1506-1516, 2020. https://doi.org/10.1002/tee.23661
  • Y. Yamada, K. Sasaki, T. Imura and Y. Hori, Design method of coils for dynamic wireless power transfer considering average transmission power and installation rate. IEEE Southern Power Electronics Conference (SPEC), Kigali, Rwanda, 1-8, 2021. https://doi.org/10.1109/SPEC52827.2021.9709485.
  • I. Fatih ve K. Orhan, Impedance analysis and variable capacity array application for wireless energy-transfer system via coupled magnetic resonances, Gazi University Journal of Science Part C: Design and Technology, 8(4), 1005-1020, .2020.
  • N. Rasekh, J. Wang and X. Yuan, In-situ measurement and investigation of winding loss in high-frequency cored transformers under large-signal condition. IEEE Open Journal of Industry Applications, 3, 164-177, 2022, https://doi.org/10.1109/OJIA.2022.3193584.
  • L. Feng, Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation. Applied Energy, 323, 119631, 2022. https://doi.org/10.1016/j.apenergy.2022.119631
  • Y. Özüpak, Analysis of the model designed for magnetic resonance based wireless power transfer using FEM. Journal of Engineering Research, 11, 3, 2023. https://doi.org/10.36909/jer.17631
  • J. Park, 22 kW high-efficiency IPT system for wireless charging of electric vehicles. Journal of Power Electron, 23, 374–386, 2023. https://doi.org/10.1007/s43236-022-00569-w
  • H. Wang, A special magnetic coupling structure design for wireless power transfer system. IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), 1-2, 2020. https://doi.org/10.1109/CEFC55061.2022.9940745.
  • I. Hussain and D.K. Woo, Self-inductance calculation of the archimedean spiral coil. Energies. 15, 253, 2022 https://doi.org/10.3390/en15010253.
  • SAE, Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology, standard No: J2954_202010, 2020. https://www.sae.org/standards/content/j2954_202010/
  • International commission on non-ionizing radiation protection (ICNIRP), Health Phys., 99(6), 818, 2020. https://www.icnirp.org/en/activities/news/news-article/rf-guidelines-2020-published.html
  • IEEE, Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz," in IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019) , 4, 1-312, 2019. https://doi.org/10.1109/IEEESTD.2019.8859679.
  • Y. Özüpak, Analysis of the parameters affecting the efficiency of the wireless power transmission system designed for new generation electric vehicles. International Journal of Automotive Technology, 24, 1675–1680, 2023. https://doi.org/10.1007/s12239-023-0135-1
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hibrit ve Elektrikli Araçlar ve Güç Aktarma Organları
Bölüm Araştırma Makaleleri
Yazarlar

Emrah Aslan 0000-0002-0181-3658

Yıldırım Özüpak 0000-0001-8461-8702

Erken Görünüm Tarihi 7 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 6 Ocak 2024
Kabul Tarihi 17 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Aslan, E., & Özüpak, Y. (2024). Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 632-638. https://doi.org/10.28948/ngumuh.1415695
AMA Aslan E, Özüpak Y. Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):632-638. doi:10.28948/ngumuh.1415695
Chicago Aslan, Emrah, ve Yıldırım Özüpak. “Kablosuz güç Transferi Sistemi için Q faktörü Etkisinin Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 632-38. https://doi.org/10.28948/ngumuh.1415695.
EndNote Aslan E, Özüpak Y (01 Nisan 2024) Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 632–638.
IEEE E. Aslan ve Y. Özüpak, “Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 632–638, 2024, doi: 10.28948/ngumuh.1415695.
ISNAD Aslan, Emrah - Özüpak, Yıldırım. “Kablosuz güç Transferi Sistemi için Q faktörü Etkisinin Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 632-638. https://doi.org/10.28948/ngumuh.1415695.
JAMA Aslan E, Özüpak Y. Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. NÖHÜ Müh. Bilim. Derg. 2024;13:632–638.
MLA Aslan, Emrah ve Yıldırım Özüpak. “Kablosuz güç Transferi Sistemi için Q faktörü Etkisinin Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 632-8, doi:10.28948/ngumuh.1415695.
Vancouver Aslan E, Özüpak Y. Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. NÖHÜ Müh. Bilim. Derg. 2024;13(2):632-8.

 23135