Araştırma Makalesi
BibTex RIS Kaynak Göster

Korpus luteum oluşumu sırasında meydana gelen yapısal değişiklikler

Yıl 2024, Cilt: 17 Sayı: 2, 285 - 301, 01.04.2024
https://doi.org/10.31362/patd.1383988

Öz

Amaç: Çalışmamız, korpus luteum'un bitişiğindeki yüzey epiteli ve tunika albugineanın yeniden yapılanmasından sonra bu bölgedeki fibroblast benzeri hücrelerin arasında yeni foliküllerin oluşup oluşmadığını araştırmayı amaçlamaktadır. Ayrıca, foliküllerden gelişen yapıları ve ovaryumdaki histolojik değişiklikleri göstermek de bir başka hedefimizdir.
Gereç ve yöntem: Ovulasyondan sonra graaf folikülünden oluşan korpus luteum'un histolojik kesitleri, 12-14 aylık Wistar albino tipi sıçanların ovaryum dokularından alınarak hazırlanmıştır.
Bulgular: Korpus luteum yüksek bir hacime ulaştığında, tunika albugineada bulunan fibroblast benzeri hücrelerin sayısı oldukça düşüktür. Daha sonrasında, tunika albuginea bulunan fibroblast benzeri hücrelerin sayısının hızla arttığı ve bu hücrelerin oluşturduğu kollajen liflerin konsantrik dizilim oluşturdukları gözlemlenmiştir. Ayrıca, korpus luteumun bitişiğindeki yüzey epiteli ve tunika albuginea tabakası arasında primordial ve primer foliküllerin oluştuğu izlenmiştir.
Sonuç: Ovaryumu bir bütün olarak ele almak ve yapıların gelişim süreçlerini incelemek, bu organın dinamiklerini daha iyi anlamamıza yardımcı olabilir.

Kaynakça

  • 1. Ross MH, Pawlina W. Histology: A Text and Atlas with Correlated Cell and Molecular Biology, 6th ed. Philadelphia, United States: Lippincott Williams and Wilkins; 2010.
  • 2. Junoquira LC, Carneiro J. Basic Histology, text-atlas, 11 th ed. Sao Paulo, Brasil:McGraw-Hill Companies;2009.
  • 3. Porras Gomez TJ, Moreno Mendoza N. Interaction between oocytes, cortical germ cells and granulosa cells of the mouse and bat, following the dissociation-re-aggregation of adult ovaries. Zygote 2020;28:223-232. https://doi.org/10.1017/S0967199420000052
  • 4. Kierszenbaum AL, Tres LL. Histology and Cell Biology: An Introduction to Pathology 5th ed. New York, United States:Elsevier; 2019.
  • 5. Meng L, Jan SZ, Hamer G, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod 2018;99:853-863. https://doi.org/10.1093/biolre/ioy116
  • 6. Gougeon A, Notarianni E. There is no neo-oogenesis in the adult mammalian ovary. J Turk Ger Gynecol Assoc 2011;12:270-273. https://doi.org/10.5152/jtgga.2011.63
  • 7. Lind AK, Weijdegård B, Dahm Kähler P, Mölne J, Sundfeldt K, Brännström M. Collagens in the human ovary and their changes in the perifollicular stroma during ovulation. Acta Obstet Gynecol Scand 2006;85:1476-1484. https://doi.org/10.1080/00016340601033741
  • 8. Ünal MS, Önder E, Çil N, et al. Explant culture of ovarian tissue. Van Med J 2022;29:421-427. https://doi.org/10.5505/vtd.2022.90947
  • 9. Bhartiya D, Shaikh A, Anand S, et al. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016;23:41-76. https://doi.org/10.1093/humupd/dmw030
  • 10. Picut CA, Dixon D, Simons ML, Stump DG, Parker GA, Remick AK. Postnatal ovary development in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol 2015;43:343-353. https://doi.org/10.1177/0192623314544380
  • 11. Unal MS, Secme M. Does the ovarian surface epithelium differentiate into primordial follicle and primary follicle precursor structures? Cukurova Med J 2022;47:1256-1262. https://doi.org/10.17826/cumj.1134852
  • 12. Ünal MS, Kabukçu C. Isolation of human cumulus granulosa cells. Van Med J 2022;29:84-89. https://doi.org/10.5505/vtd.2022.20805
  • 13. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007;28:117-149. https://doi.org/10.1210/er.2006-0022
  • 14. Richards JA, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev 2018;39:1-20. https://doi.org/10.1210/er.2017-00164
  • 15. Quirk SM, Cowan RG, Harman RM. Role of the cell cycle in regression of the corpus luteum. Reproduction 2013;145:161-175. https://doi.org/10.1530/REP-12-0324
  • 16. Wen X, Liu L, Li S, et al. Prostaglandin F2α induces goat corpus luteum regression via endoplasmic reticulum stress and autophagy. Front Physiol 2020;11:868. https://doi.org/10.3389/fphys.2020.00868
  • 17. Okamoto S, Okamoto A, Nikaido T, et al. Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol Rep 2009;21:1209-1214. https://doi.org/10.3892/or_00000343
  • 18. Xu J, Zheng T, Hong W, Ye H, Hu C, Zheng Y. Mechanism for the decision of ovarian surface epithelial stem cells to undergo neo-oogenesis or ovarian tumorigenesis. Cell Physiol Biochem 2018;50:214-232. https://doi.org/10.1159/000494001
  • 19. Murdoch WJ, McDonnel AC. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 2002;123:743-750. https://doi.org/10.1530/rep.0.1230743
  • 20. Gaytán M, Sánchez MA, Morales C, et al. Cyclic changes of the ovarian surface epithelium in the rat. Reproduction 2005;129:311-321. https://doi.org/10.1530/rep.1.00401
  • 21. Devoto L, Fuentes A, Kohen P, et al. The human corpus luteum: life cycle and function in natural cycles. Fertil Steril 2009;92:1067-1079. https://doi.org/10.1016/j.fertnstert.2008.07.1745
  • 22. Fraser HM, Wulff C. Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 2003;1:88 https://doi.org/10.1186/1477-7827-1-88
  • 23. Kinnear HM, Tomaszewski CE, Chang FL, et al. The ovarian stroma as a new frontier. Reproduction 2020;160:25-39. https://doi.org/10.1530/REP-19-0501
  • 24. Okamura H, Takenaka A, Yajima Y, Nishimura T. Ovulatory changes in the wall at the apex of the human Graafian follicle. J Reprod Fertil 1980;58:153-155. https://doi.org/10.1530/jrf.0.0580153
  • 25. Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007;213:581-588. https://doi.org/10.1002/jcp.21240
  • 26. Lu E, Li C, Wang J, Zhang C. Inflammation and angiogenesis in the corpus luteum. J Obstet Gynaecol Res 2019;45:1967-1974. https://doi.org/10.1111/jog.14076
  • 27. Walusimbi SS, Pate JL. Physiology and endocrinology symposium: role of immune cells in the corpus luteum. J Anim Sci 2013;91:1650-1659. https://doi.org/10.2527/jas.2012-6179
  • 28. Fang L, Li Y, Wang S, et al. TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Exp Mol Med 2020;52:450-460. https://doi.org/10.1038/s12276-020-0396-y
  • 29. Maybin JA, Duncan WC. The human corpus luteum: which cells have progesterone receptors? Reproduction 2004;128:423-431. https://doi.org/10.1530/rep.1.00051
  • 30. Abd Elkareem M, Abou Elhamd AS. Immunohistochemical localization of progesterone receptors alpha (PRA) in ovary of the pseudopregnant rabbit. Anim Reprod 2019;16:302-310. https://doi.org/10.21451/1984-3143-AR2018-0128
  • 31. Bagnjuk K, Mayerhofer A. Human luteinized granulosa cells-a cellular model for the human corpus luteum. Front Endocrinol 2019;10:452. https://doi.org/10.3389/fendo.2019.00452
  • 32. Irving Rodgers HF, Rodgers RJ. Extracellular matrix of the developing ovarian follicle. Semin Reprod Med 2006;24:195-203. https://doi.org/10.1055/s-2006-948549
  • 33. Berkholtz CB, Lai BE, Woodruff TK, Shea LD. Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol 2006;126:583-592. https://doi.org/10.1007/s00418-006-0194-1
  • 34. Johnson J, Bagley J, Skaznik Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005;122:303-315. https://doi.org/10.1016/j.cell.2005.06.031
  • 35. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 2005;3:17 https://doi.org/10.1186/1477-7827-3-17
  • 36. Virant Klun I, Zech N, Rozman P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 2008;76:843-856. https://doi.org/10.1111/j.1432-0436.2008.00268.x
  • 37. Bhartiya D. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary. J Ovarian Res 2015;8:70. https://doi.org/10.1186/s13048-015-0200-0

Changes in structure during the corpus luteum's formation

Yıl 2024, Cilt: 17 Sayı: 2, 285 - 301, 01.04.2024
https://doi.org/10.31362/patd.1383988

Öz

Purpose: Our study aims to investigate whether new follicles form among fibroblast-like cells in the region after the restructuring of the surface epithelium and tunica albuginea adjacent to the corpus luteum. Additionally, another goal is to demonstrate the structures developed from the follicles and the histological changes in the ovary.
Materials and methods: Histological sections of the corpus luteum, formed from the Graafian follicle after ovulation, were prepared from ovarian tissues of 12-14 months old Wistar albino rats.
Results: When the corpus luteum reaches a high volume, the number of fibroblast-like cells in the tunica albuginea is quite low. Subsequently, it has been observed that the number of fibroblast-like cells in the tunica albuginea rapidly increases, and these cells form concentric arrangements of collagen fibers. Additionally, the formation of primordial and primary follicles between the surface epithelium and the tunica albuginea adjacent to the corpus luteum has been observed.
Conclusion: Examining the ovary as a whole and investigating the developmental processes of structures can assist in gaining a better understanding of the dynamics of this organ.

Kaynakça

  • 1. Ross MH, Pawlina W. Histology: A Text and Atlas with Correlated Cell and Molecular Biology, 6th ed. Philadelphia, United States: Lippincott Williams and Wilkins; 2010.
  • 2. Junoquira LC, Carneiro J. Basic Histology, text-atlas, 11 th ed. Sao Paulo, Brasil:McGraw-Hill Companies;2009.
  • 3. Porras Gomez TJ, Moreno Mendoza N. Interaction between oocytes, cortical germ cells and granulosa cells of the mouse and bat, following the dissociation-re-aggregation of adult ovaries. Zygote 2020;28:223-232. https://doi.org/10.1017/S0967199420000052
  • 4. Kierszenbaum AL, Tres LL. Histology and Cell Biology: An Introduction to Pathology 5th ed. New York, United States:Elsevier; 2019.
  • 5. Meng L, Jan SZ, Hamer G, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod 2018;99:853-863. https://doi.org/10.1093/biolre/ioy116
  • 6. Gougeon A, Notarianni E. There is no neo-oogenesis in the adult mammalian ovary. J Turk Ger Gynecol Assoc 2011;12:270-273. https://doi.org/10.5152/jtgga.2011.63
  • 7. Lind AK, Weijdegård B, Dahm Kähler P, Mölne J, Sundfeldt K, Brännström M. Collagens in the human ovary and their changes in the perifollicular stroma during ovulation. Acta Obstet Gynecol Scand 2006;85:1476-1484. https://doi.org/10.1080/00016340601033741
  • 8. Ünal MS, Önder E, Çil N, et al. Explant culture of ovarian tissue. Van Med J 2022;29:421-427. https://doi.org/10.5505/vtd.2022.90947
  • 9. Bhartiya D, Shaikh A, Anand S, et al. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016;23:41-76. https://doi.org/10.1093/humupd/dmw030
  • 10. Picut CA, Dixon D, Simons ML, Stump DG, Parker GA, Remick AK. Postnatal ovary development in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol 2015;43:343-353. https://doi.org/10.1177/0192623314544380
  • 11. Unal MS, Secme M. Does the ovarian surface epithelium differentiate into primordial follicle and primary follicle precursor structures? Cukurova Med J 2022;47:1256-1262. https://doi.org/10.17826/cumj.1134852
  • 12. Ünal MS, Kabukçu C. Isolation of human cumulus granulosa cells. Van Med J 2022;29:84-89. https://doi.org/10.5505/vtd.2022.20805
  • 13. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007;28:117-149. https://doi.org/10.1210/er.2006-0022
  • 14. Richards JA, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev 2018;39:1-20. https://doi.org/10.1210/er.2017-00164
  • 15. Quirk SM, Cowan RG, Harman RM. Role of the cell cycle in regression of the corpus luteum. Reproduction 2013;145:161-175. https://doi.org/10.1530/REP-12-0324
  • 16. Wen X, Liu L, Li S, et al. Prostaglandin F2α induces goat corpus luteum regression via endoplasmic reticulum stress and autophagy. Front Physiol 2020;11:868. https://doi.org/10.3389/fphys.2020.00868
  • 17. Okamoto S, Okamoto A, Nikaido T, et al. Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol Rep 2009;21:1209-1214. https://doi.org/10.3892/or_00000343
  • 18. Xu J, Zheng T, Hong W, Ye H, Hu C, Zheng Y. Mechanism for the decision of ovarian surface epithelial stem cells to undergo neo-oogenesis or ovarian tumorigenesis. Cell Physiol Biochem 2018;50:214-232. https://doi.org/10.1159/000494001
  • 19. Murdoch WJ, McDonnel AC. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 2002;123:743-750. https://doi.org/10.1530/rep.0.1230743
  • 20. Gaytán M, Sánchez MA, Morales C, et al. Cyclic changes of the ovarian surface epithelium in the rat. Reproduction 2005;129:311-321. https://doi.org/10.1530/rep.1.00401
  • 21. Devoto L, Fuentes A, Kohen P, et al. The human corpus luteum: life cycle and function in natural cycles. Fertil Steril 2009;92:1067-1079. https://doi.org/10.1016/j.fertnstert.2008.07.1745
  • 22. Fraser HM, Wulff C. Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 2003;1:88 https://doi.org/10.1186/1477-7827-1-88
  • 23. Kinnear HM, Tomaszewski CE, Chang FL, et al. The ovarian stroma as a new frontier. Reproduction 2020;160:25-39. https://doi.org/10.1530/REP-19-0501
  • 24. Okamura H, Takenaka A, Yajima Y, Nishimura T. Ovulatory changes in the wall at the apex of the human Graafian follicle. J Reprod Fertil 1980;58:153-155. https://doi.org/10.1530/jrf.0.0580153
  • 25. Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007;213:581-588. https://doi.org/10.1002/jcp.21240
  • 26. Lu E, Li C, Wang J, Zhang C. Inflammation and angiogenesis in the corpus luteum. J Obstet Gynaecol Res 2019;45:1967-1974. https://doi.org/10.1111/jog.14076
  • 27. Walusimbi SS, Pate JL. Physiology and endocrinology symposium: role of immune cells in the corpus luteum. J Anim Sci 2013;91:1650-1659. https://doi.org/10.2527/jas.2012-6179
  • 28. Fang L, Li Y, Wang S, et al. TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Exp Mol Med 2020;52:450-460. https://doi.org/10.1038/s12276-020-0396-y
  • 29. Maybin JA, Duncan WC. The human corpus luteum: which cells have progesterone receptors? Reproduction 2004;128:423-431. https://doi.org/10.1530/rep.1.00051
  • 30. Abd Elkareem M, Abou Elhamd AS. Immunohistochemical localization of progesterone receptors alpha (PRA) in ovary of the pseudopregnant rabbit. Anim Reprod 2019;16:302-310. https://doi.org/10.21451/1984-3143-AR2018-0128
  • 31. Bagnjuk K, Mayerhofer A. Human luteinized granulosa cells-a cellular model for the human corpus luteum. Front Endocrinol 2019;10:452. https://doi.org/10.3389/fendo.2019.00452
  • 32. Irving Rodgers HF, Rodgers RJ. Extracellular matrix of the developing ovarian follicle. Semin Reprod Med 2006;24:195-203. https://doi.org/10.1055/s-2006-948549
  • 33. Berkholtz CB, Lai BE, Woodruff TK, Shea LD. Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol 2006;126:583-592. https://doi.org/10.1007/s00418-006-0194-1
  • 34. Johnson J, Bagley J, Skaznik Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005;122:303-315. https://doi.org/10.1016/j.cell.2005.06.031
  • 35. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 2005;3:17 https://doi.org/10.1186/1477-7827-3-17
  • 36. Virant Klun I, Zech N, Rozman P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 2008;76:843-856. https://doi.org/10.1111/j.1432-0436.2008.00268.x
  • 37. Bhartiya D. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary. J Ovarian Res 2015;8:70. https://doi.org/10.1186/s13048-015-0200-0
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Murat Serkant Ünal 0000-0003-1992-7909

Semih Tan 0000-0002-5609-9594

Mücahit Seçme 0000-0002-2084-760X

Erken Görünüm Tarihi 30 Ocak 2024
Yayımlanma Tarihi 1 Nisan 2024
Gönderilme Tarihi 31 Ekim 2023
Kabul Tarihi 30 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Ünal, M. S., Tan, S., & Seçme, M. (2024). Changes in structure during the corpus luteum’s formation. Pamukkale Medical Journal, 17(2), 285-301. https://doi.org/10.31362/patd.1383988
AMA Ünal MS, Tan S, Seçme M. Changes in structure during the corpus luteum’s formation. Pam Tıp Derg. Nisan 2024;17(2):285-301. doi:10.31362/patd.1383988
Chicago Ünal, Murat Serkant, Semih Tan, ve Mücahit Seçme. “Changes in Structure During the Corpus luteum’s Formation”. Pamukkale Medical Journal 17, sy. 2 (Nisan 2024): 285-301. https://doi.org/10.31362/patd.1383988.
EndNote Ünal MS, Tan S, Seçme M (01 Nisan 2024) Changes in structure during the corpus luteum’s formation. Pamukkale Medical Journal 17 2 285–301.
IEEE M. S. Ünal, S. Tan, ve M. Seçme, “Changes in structure during the corpus luteum’s formation”, Pam Tıp Derg, c. 17, sy. 2, ss. 285–301, 2024, doi: 10.31362/patd.1383988.
ISNAD Ünal, Murat Serkant vd. “Changes in Structure During the Corpus luteum’s Formation”. Pamukkale Medical Journal 17/2 (Nisan 2024), 285-301. https://doi.org/10.31362/patd.1383988.
JAMA Ünal MS, Tan S, Seçme M. Changes in structure during the corpus luteum’s formation. Pam Tıp Derg. 2024;17:285–301.
MLA Ünal, Murat Serkant vd. “Changes in Structure During the Corpus luteum’s Formation”. Pamukkale Medical Journal, c. 17, sy. 2, 2024, ss. 285-01, doi:10.31362/patd.1383988.
Vancouver Ünal MS, Tan S, Seçme M. Changes in structure during the corpus luteum’s formation. Pam Tıp Derg. 2024;17(2):285-301.
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır