Araştırma Makalesi
BibTex RIS Kaynak Göster

SWARA Temelli Bulanık TOPSIS Yöntemiyle Elektrik Üretimi Yönetim Sürecine İlişkin Risk Değerlendirmesi

Yıl 2024, Cilt: 27 Sayı: 1, 69 - 79, 29.02.2024
https://doi.org/10.2339/politeknik.917535

Öz

Elektrik üretim santrallerinde elektrik üretimi yönetim süreçlerinin başarılı bir şekilde devam ettirilmesinde, ilgili süreçlerin işletilmesi esnasında ortaya çıkabilecek risklerin belirlenerek, bu risklerin en aza indirgenmeye çalışılması için önlem alınması ve gerekli eylemlerin hayata geçirilmesi büyük önem arz etmektedir. Bu çalışmada, HES’lerde elektrik üretimi yönetim sürecindeki ortak riskler belirlenerek bu riskler her santralin kendi içindeki uzman kişilerce (karar vericiler) derecelendirilmiştir. Bu derecelendirme her bir santralin kendi uzmanlarınca yapıldığından aynı riske ait etki ve olasılık değerleri farklılık gösterebilmekte, buna bağlı olarak da aynı risk için farklı risk dereceleri ortaya çıkabilmektedir. Çalışmada, farklı santrallerdeki elektrik üretimi sürecindeki ortak risklere ait risk derecelerinin birbirleri ile karşılaştırılması ve ilgili risklerin nihai ağırlık değerlerinin hesaplanması için SWARA yönteminden yararlanılmıştır. Santrallerdeki elektrik üretim yönetim süreçlerindeki her bir riske ilişkin alınan önlemler ve gerçekleştirilen eylemler sonucu ilgili risklerin kabul edilebilir seviyelere indirgenip indirgenmediği yapılan iç denetimlerin sonuçlarına bakılarak belirlenmiştir. Yapılan iç tetkiklerde her bir risk için ayrı ayrı değerlendirme yapılarak, santrallerin risk gidermedeki başarımları bulanık ifadeler ile değerlendirilmektedir. SWARA yöntemi ile elde edilen risk ağırlık değerleri ve risk değerlendirmesi sonucu elde edilen bulanık ifadeler Bulanık TOPSIS yöntemi ile analiz edilerek santrallerin riskleri gidermedeki performans değerleri hesaplanmış ve bu değerler ışığında başarım sıralaması yapılmıştır.

Kaynakça

  • [1] Butt J., “A Conceptual Framework to Support Digital Transformation in Manufacturing Using an Integrated Business Process Management Approach”, Designs, 4:3, (2020).
  • [2] Zileli Y. A. and Ersoy A. S., “Bulanık Dematel Tabanlı Analitik Ağ Süreci İle Bir Risk Yönetim Modelinin Geliştirilmesi”, Akademi Sosyal Bilimler Dergisi, 6:18, 418-443, (2019).
  • [3] Akçakanat Ö., “Kurumsal Risk Yönetimi Ve Kurumsal Risk Yönetim Süreci”, Visionary E-Journal/Vizyoner Dergisi, 4(7), (2020).
  • [4] Ertan Y., Arsoy A. P. and Kılınçarslan T. B., “Kurumsal Risk Yönetimi Olgunlaşma Seviyesinin Finansal Performansa Etkisi: Türkiye Örneği”, Muhasebe ve Finansman Dergisi, 76, 139-156, (2017).
  • [5] Kim M. S., Lee E. B., Jung I. H. and Alleman D., “Risk Assessment and Mitigation Model for Overseas Steel-Plant Project Investment with Analytic Hierarchy Process—Fuzzy Inference System”, Sustainability, 10:12, 4780, (2018).
  • [6] Kul Y., Şeker A. and Yurdakul M., “Bulanık Çok Kriterli Karar Verme Yöntemlerinin Alışılmamış İmalat Yöntemlerinin Seçiminde Kullanılması”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29:3, (2014).
  • [7] Gul M., Ak M. F. and Guneri A. F., “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry”, Journal of Safety Research, 69, 135-153, (2019).
  • [8] Rahmani S. and Omidvari M. “Assessing safety risk in electricity distribution processes using ET & BA improved technique and its ranking by VIKOR and TOPSIS models in fuzzy environment”, Health and safety at work, 6:1, 1-12, (2016).
  • [9] Wu Y., Jia W., Li L., Song Z., Xu C. and Liu F, “Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation”, Energy, 182, 397-411, (2019).
  • [10] Wu Y., Ke Y., Wang J., Li L. and Lin X., “Risk assessment in photovoltaic poverty alleviation projects in China under intuitionistic fuzzy environment”, Journal of Cleaner Production, 219, 587-600, (2019).
  • [11] Polishchuk V., Kelemen M., Gavurová B., Varotsos C., Andoga R., Gera M. and Szabo S. “A fuzzy model of risk assessment for environmental start-up projects in the air transport sector”, International journal of environmental research and public health, 16:19, 3573, (2019).
  • [12] Liang W., Zhao G., Wu H. and Dai B., “Risk assessment of rockburst via an extended MABAC method under fuzzy environment”, Tunnelling and Underground Space Technology, 83, 533-544, (2019).
  • [13] Karasan A., Ilbahar E., Cebi S. and Kahraman C., “A new risk assessment approach: Safety and Critical Effect Analysis (SCEA) and its extension with Pythagorean fuzzy sets”, Safety science, 108, 173-187, (2018).
  • [14] Panchal D. and Kumar, D. “Risk analysis of compressor house unit in thermal power plant using integrated fuzzy FMEA and GRA approach”, International Journal of industrial and systems Engineering, 25:2, 228-250, (2017).
  • [15] Adar E., Ince M., Karatop B. and Bilgili M. S., “The risk analysis by failure mode and effect analysis (FMEA) and fuzzy-FMEA of supercritical water gasification system used in the sewage sludge treatment”, Journal of Environmental Chemical Engineering, 5(1), 1261-1268, (2017).
  • [16] Serrano-Gomez L. and Munoz-Hernandez J. I., “Monte Carlo approach to fuzzy AHP risk analysis in renewable energy construction projects”, PloS one, 14:6, (2019).
  • [17] Kul C., Zhang L. and Solangi Y. A., “Assessing the renewable energy investment risk factors for sustainable development in Turkey”, Journal of Cleaner Production, 276, (2020).
  • [18] Yazıcı E., Özcan E., Alakaş H.M., and Eren T., “Hidroelektrik santrallarda bakım strateji seçimi için hiyerarşik karar modeli önerisi”, Politeknik Dergisi, 1-1, (2021).
  • [19] Toz G., Yücedağ İ., Erdoğmuş P., “A fuzzy image clustering method based on an improved backtracking search optimization algorithm with an inertia weight parameter”, Journal of King Saud University-Computer and Information Sciences, 31:3, 295-303, (2019).
  • [20] Aktaş İ.Ş., Menlik T. and Sözen A., “Akıllı bir şebekedeki risk indikatörlerinin bulanık analitik hiyerarşi prosesi ile modellenmesi”, Politeknik Dergisi, 23(3): 505-513, (2020).
  • [21] Başhan V. and Demirel H. “Application of fuzzy Dematel technique to assess most common critical operational faults of marine boilers”, Politeknik Dergisi, 22(3): 545-555, (2019).
  • [22] Bayrakdar M., Bayrakdar S., Yücedağ İ., Çalhan A., “Bilişsel Radyo Kullanıcıları için Bulanık Mantık Yardımıyla Kanal Kullanım Olasılığı Hesabında Farklı Bir Yaklaşım”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3, 88-99, (2015).
  • [23] Radhika C. and Parvathi R., “Intuitionistic fuzzification functions”, Global Journal of Pure and Applied Mathematics, 12:2, 1211-1227, (2016).
  • [24] Madenoğlu F. S., “Bulanık Çok Kriterli Karar Verme Ortamında Yeşil Tedarikçi Seçimi”, Business & Management Studies: An International Journal, 7:4, 1850-1869, (2019).
  • [25] Zarbakhshnia N., Soleimani H. and Ghaderi H., “Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria”, Applied Soft Computing, 65, 307-319, (2018).
  • [26] Ezhilarasan N. and Vijayalakshmi C., “Optimization of Fuzzy programming with TOPSIS Algorithm”, Procedia Computer Science, 172, 473-479, (2020).
  • [27] Akram M. and Arshad M., “Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis”, Computational and Applied Mathematics, 39:1, 1-21, (2020).
  • [28] Rudnik K., and Kacprzak D., “Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system” Applied Soft Computing, 52, 1020-1041, (2017).
  • [29] Ervural B. C., Zaim S., Demirel O. F., Aydin Z. and Delen D., “An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning”, Renewable and Sustainable Energy Reviews, 82, 1538-1550, (2018).
  • [30] Sofuoğlu M.A., “Fuzzy applications of FUCOM method in manufacturing environment”, Politeknik Dergisi, 23(1): 189-195, (2020).
  • [31] Mandal S., and Maiti J., “Risk analysis using FMEA: Fuzzy similarity value and possibility theory based approach”, Expert Systems with Applications, 41:7, 3527-3537, (2014).

Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method

Yıl 2024, Cilt: 27 Sayı: 1, 69 - 79, 29.02.2024
https://doi.org/10.2339/politeknik.917535

Öz

In the successful maintenance of electricity generation management processes in power generation plants, it is of great importance to determine the risks that may arise during the operation of the relevant processes, take measures to minimize these risks, and take the necessary actions. In this study, common risks in the electricity generation management process in HEPPs were identified and these risks were rated by experts (decision-makers) within each power plant itself. Since this rating is made by the experts of each power plant, the impact and probability values of the same risk may differ, and accordingly, different risk levels may arise for the same risk. In the study, the SWARA method was used to compare the risk levels of common risks in the electricity generation process in different power plants and calculate the final weight values of the related risks. As a result of the measures determined for each risk in the electricity generation management processes in the power plants and the actions taken for these measures, it was determined whether the relevant risks were reduced to acceptable levels by looking at the results of the internal audits. In the internal audits, the performance of HEPPs in eliminating the related risks is evaluated with fuzzy expressions separately for each risk. The risk weight values obtained by the SWARA method and the fuzzy expressions obtained as a result of the risk assessment were analyzed with the Fuzzy TOPSIS method, and the performance values of the power plants in eliminating the risks were calculated, then the performance ranking was made in the light of these values.

Kaynakça

  • [1] Butt J., “A Conceptual Framework to Support Digital Transformation in Manufacturing Using an Integrated Business Process Management Approach”, Designs, 4:3, (2020).
  • [2] Zileli Y. A. and Ersoy A. S., “Bulanık Dematel Tabanlı Analitik Ağ Süreci İle Bir Risk Yönetim Modelinin Geliştirilmesi”, Akademi Sosyal Bilimler Dergisi, 6:18, 418-443, (2019).
  • [3] Akçakanat Ö., “Kurumsal Risk Yönetimi Ve Kurumsal Risk Yönetim Süreci”, Visionary E-Journal/Vizyoner Dergisi, 4(7), (2020).
  • [4] Ertan Y., Arsoy A. P. and Kılınçarslan T. B., “Kurumsal Risk Yönetimi Olgunlaşma Seviyesinin Finansal Performansa Etkisi: Türkiye Örneği”, Muhasebe ve Finansman Dergisi, 76, 139-156, (2017).
  • [5] Kim M. S., Lee E. B., Jung I. H. and Alleman D., “Risk Assessment and Mitigation Model for Overseas Steel-Plant Project Investment with Analytic Hierarchy Process—Fuzzy Inference System”, Sustainability, 10:12, 4780, (2018).
  • [6] Kul Y., Şeker A. and Yurdakul M., “Bulanık Çok Kriterli Karar Verme Yöntemlerinin Alışılmamış İmalat Yöntemlerinin Seçiminde Kullanılması”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29:3, (2014).
  • [7] Gul M., Ak M. F. and Guneri A. F., “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry”, Journal of Safety Research, 69, 135-153, (2019).
  • [8] Rahmani S. and Omidvari M. “Assessing safety risk in electricity distribution processes using ET & BA improved technique and its ranking by VIKOR and TOPSIS models in fuzzy environment”, Health and safety at work, 6:1, 1-12, (2016).
  • [9] Wu Y., Jia W., Li L., Song Z., Xu C. and Liu F, “Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation”, Energy, 182, 397-411, (2019).
  • [10] Wu Y., Ke Y., Wang J., Li L. and Lin X., “Risk assessment in photovoltaic poverty alleviation projects in China under intuitionistic fuzzy environment”, Journal of Cleaner Production, 219, 587-600, (2019).
  • [11] Polishchuk V., Kelemen M., Gavurová B., Varotsos C., Andoga R., Gera M. and Szabo S. “A fuzzy model of risk assessment for environmental start-up projects in the air transport sector”, International journal of environmental research and public health, 16:19, 3573, (2019).
  • [12] Liang W., Zhao G., Wu H. and Dai B., “Risk assessment of rockburst via an extended MABAC method under fuzzy environment”, Tunnelling and Underground Space Technology, 83, 533-544, (2019).
  • [13] Karasan A., Ilbahar E., Cebi S. and Kahraman C., “A new risk assessment approach: Safety and Critical Effect Analysis (SCEA) and its extension with Pythagorean fuzzy sets”, Safety science, 108, 173-187, (2018).
  • [14] Panchal D. and Kumar, D. “Risk analysis of compressor house unit in thermal power plant using integrated fuzzy FMEA and GRA approach”, International Journal of industrial and systems Engineering, 25:2, 228-250, (2017).
  • [15] Adar E., Ince M., Karatop B. and Bilgili M. S., “The risk analysis by failure mode and effect analysis (FMEA) and fuzzy-FMEA of supercritical water gasification system used in the sewage sludge treatment”, Journal of Environmental Chemical Engineering, 5(1), 1261-1268, (2017).
  • [16] Serrano-Gomez L. and Munoz-Hernandez J. I., “Monte Carlo approach to fuzzy AHP risk analysis in renewable energy construction projects”, PloS one, 14:6, (2019).
  • [17] Kul C., Zhang L. and Solangi Y. A., “Assessing the renewable energy investment risk factors for sustainable development in Turkey”, Journal of Cleaner Production, 276, (2020).
  • [18] Yazıcı E., Özcan E., Alakaş H.M., and Eren T., “Hidroelektrik santrallarda bakım strateji seçimi için hiyerarşik karar modeli önerisi”, Politeknik Dergisi, 1-1, (2021).
  • [19] Toz G., Yücedağ İ., Erdoğmuş P., “A fuzzy image clustering method based on an improved backtracking search optimization algorithm with an inertia weight parameter”, Journal of King Saud University-Computer and Information Sciences, 31:3, 295-303, (2019).
  • [20] Aktaş İ.Ş., Menlik T. and Sözen A., “Akıllı bir şebekedeki risk indikatörlerinin bulanık analitik hiyerarşi prosesi ile modellenmesi”, Politeknik Dergisi, 23(3): 505-513, (2020).
  • [21] Başhan V. and Demirel H. “Application of fuzzy Dematel technique to assess most common critical operational faults of marine boilers”, Politeknik Dergisi, 22(3): 545-555, (2019).
  • [22] Bayrakdar M., Bayrakdar S., Yücedağ İ., Çalhan A., “Bilişsel Radyo Kullanıcıları için Bulanık Mantık Yardımıyla Kanal Kullanım Olasılığı Hesabında Farklı Bir Yaklaşım”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3, 88-99, (2015).
  • [23] Radhika C. and Parvathi R., “Intuitionistic fuzzification functions”, Global Journal of Pure and Applied Mathematics, 12:2, 1211-1227, (2016).
  • [24] Madenoğlu F. S., “Bulanık Çok Kriterli Karar Verme Ortamında Yeşil Tedarikçi Seçimi”, Business & Management Studies: An International Journal, 7:4, 1850-1869, (2019).
  • [25] Zarbakhshnia N., Soleimani H. and Ghaderi H., “Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria”, Applied Soft Computing, 65, 307-319, (2018).
  • [26] Ezhilarasan N. and Vijayalakshmi C., “Optimization of Fuzzy programming with TOPSIS Algorithm”, Procedia Computer Science, 172, 473-479, (2020).
  • [27] Akram M. and Arshad M., “Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis”, Computational and Applied Mathematics, 39:1, 1-21, (2020).
  • [28] Rudnik K., and Kacprzak D., “Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system” Applied Soft Computing, 52, 1020-1041, (2017).
  • [29] Ervural B. C., Zaim S., Demirel O. F., Aydin Z. and Delen D., “An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning”, Renewable and Sustainable Energy Reviews, 82, 1538-1550, (2018).
  • [30] Sofuoğlu M.A., “Fuzzy applications of FUCOM method in manufacturing environment”, Politeknik Dergisi, 23(1): 189-195, (2020).
  • [31] Mandal S., and Maiti J., “Risk analysis using FMEA: Fuzzy similarity value and possibility theory based approach”, Expert Systems with Applications, 41:7, 3527-3537, (2014).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hamdullah Karamollaoğlu 0000-0001-6419-2249

İbrahim Yücedağ 0000-0003-2975-7392

İbrahim Dogru 0000-0001-9324-7157

Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 16 Nisan 2021
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 1

Kaynak Göster

APA Karamollaoğlu, H., Yücedağ, İ., & Dogru, İ. (2024). Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method. Politeknik Dergisi, 27(1), 69-79. https://doi.org/10.2339/politeknik.917535
AMA Karamollaoğlu H, Yücedağ İ, Dogru İ. Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method. Politeknik Dergisi. Şubat 2024;27(1):69-79. doi:10.2339/politeknik.917535
Chicago Karamollaoğlu, Hamdullah, İbrahim Yücedağ, ve İbrahim Dogru. “Risk Assessment for Electricity Generation Management Process With SWARA Based Fuzzy TOPSIS Method”. Politeknik Dergisi 27, sy. 1 (Şubat 2024): 69-79. https://doi.org/10.2339/politeknik.917535.
EndNote Karamollaoğlu H, Yücedağ İ, Dogru İ (01 Şubat 2024) Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method. Politeknik Dergisi 27 1 69–79.
IEEE H. Karamollaoğlu, İ. Yücedağ, ve İ. Dogru, “Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method”, Politeknik Dergisi, c. 27, sy. 1, ss. 69–79, 2024, doi: 10.2339/politeknik.917535.
ISNAD Karamollaoğlu, Hamdullah vd. “Risk Assessment for Electricity Generation Management Process With SWARA Based Fuzzy TOPSIS Method”. Politeknik Dergisi 27/1 (Şubat 2024), 69-79. https://doi.org/10.2339/politeknik.917535.
JAMA Karamollaoğlu H, Yücedağ İ, Dogru İ. Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method. Politeknik Dergisi. 2024;27:69–79.
MLA Karamollaoğlu, Hamdullah vd. “Risk Assessment for Electricity Generation Management Process With SWARA Based Fuzzy TOPSIS Method”. Politeknik Dergisi, c. 27, sy. 1, 2024, ss. 69-79, doi:10.2339/politeknik.917535.
Vancouver Karamollaoğlu H, Yücedağ İ, Dogru İ. Risk Assessment for Electricity Generation Management Process with SWARA Based Fuzzy TOPSIS Method. Politeknik Dergisi. 2024;27(1):69-7.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.