Araştırma Makalesi
BibTex RIS Kaynak Göster

Bitki Örtülü Kanalların Akım Özelliklerinin Hesaplamalı Akışkanlar Dinamiği ile Belirlenmesinde Yakın Duvar Davranışının Etkisi

Yıl 2023, Cilt: 4 Sayı: 2, 109 - 123, 31.12.2023
https://doi.org/10.53501/rteufemud.1323845

Öz

Bu çalışmada bitki örtülü kanalların akım özelliklerinin sayısal olarak tahmin edilmesinde önemli parametrelerden biri olan yakın duvar davranışı yaklaşımlarının sonuçlara etkisi incelenmiştir. Bu amaçla sayısal çalışmalar, Hesaplamalı Akışkanlar Dinamiği (HAD) metodu ile analiz yapabilen Ansys Fluent yazılımı kullanılarak üç boyutlu, türbülanslı, sıkıştırılamayan ve kararlı akım koşullarında bitki örtülü dikdörtgen kesitli bir kanal için gerçekleştirilmiştir. Sayısal çalışmalarda yakın duvar davranışı için farklı yaklaşımlar kullanılarak kanaldaki hız dağılımları tahmin edilmeye çalışılmış ve sayısal çalışmalardan elde edilen sonuçlar literatürde yapılmış deneysel bir çalışmayla karşılaştırılarak en başarılı metot ortaya konulmuştur. Yapılan karşılaştırma sonucunda “geliştirilmiş duvar fonksiyonu” yaklaşımıyla kurulan sayısal çalışma en başarılı tahmin sonucu veren yaklaşım olmuştur. Ayrıca HAD analizi sonucunda elde edilen kanaldaki hız dağılımları verilerek, bitki örtülü açık kanal akımında hidrolik özellikler incelenmiştir.

Kaynakça

  • Aberle, J., Järvelä, J., (2013). Flow resistance of emergent rigid and flexible floodplain vegetation. Journal of Hydraulic Research 51(1), 33–45. https://doi.org/10.1080/00221686.2012.754795
  • Akkoca Azize, Tutar Mustafa, Şahin Beşir, (2005). Effect of Different Wall Functions on the Prediction of Flow and Heat Transfer Characteristics in Plate Fin and Tube Heat Exchangers. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 20(4), 77-86
  • ANSYS Fluent, (2013). ANSYS Fluent.
  • Anufriev, I.S., Baklanov, A.M., Borovkova, O. V, Vigriyanov, M.S., Leshchevich, V. V, Sharypov, O. V, (2017). Investigation of soot nanoparticles during combustion of liquid hydrocarbons with injection of a superheated steam jet into the reaction zone. Combustion, Explosion, and Shock Waves, 53(2), 140–148. https://doi.org/10.1134/S0010508217020034
  • Ben Meftah, M., Mossa, M., (2023). Discharge prediction in partly vegetated channel flows: Adaptation of IDCM method with a curved interface and large-scale roughness elements. Journal of Hydrology, 616, 128805. https://doi.org/10.1016/J.JHYDROL.2022.128805
  • Breitenbach, J., Kissing, J., Roisman, I. V, Tropea, C., (2018). Characterization of secondary droplets during thermal atomization regime. Experimental Thermal and Fluid Science, 98, 516–522. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.06.030
  • Cao, B.-Y., Sun, J., Chen, M., Guo, Z.-Y., (2009). Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review. International Journal of Molecular Sciences 10(11), 4638–4706. https://doi.org/10.3390/ijms10114638
  • Chen, S.-C., Kuo, Y.-M., Li, Y.-H., (2011). Flow characteristics within different configurations of submerged flexible vegetation. Journal of Hydrology, 398(1-2), 124–134. https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.12.018
  • Chen, X., Liu, Y., (2015). Finite Element Modeling and Simulation with Ansys Workbench. CR Press, Taylor&Francis Group.
  • De Marchis, M., Milici, B., Sardina, G., Napoli, E., (2016). Interaction between turbulent structures and particles in roughened channel. International Journal of Multiphase Flow, 78, 117–131. https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.011
  • Ferro, V., (2019). Assessing flow resistance law in vegetated channels by dimensional analysis and self-similarity. Flow Measurement and Instrumentation, 69, 101610. https://doi.org/10.1016/J.FLOWMEASINST.2019.101610
  • Han, L., Zeng, Y., Chen, L., Li, M., (2018). Modeling streamwise velocity and boundary shear stress of vegetation-covered flow. Ecological Indicators, 92, 379–387. https://doi.org/10.1016/J.ECOLIND.2017.04.012
  • Helmiö, T., (2004). Flow resistance due to lateral momentum transfer in partially vegetated rivers. Water Resources Research, 40 (5), W05206. https://doi.org/10.1029/2004WR003058
  • Hou, Q., Zou, Z., (2005). Comparison between standard and renormalization group k-ε models in numerical simulation of swirling flow tundish. ISIJ International, 45(3), 325–330. https://doi.org/10.2355/isijinternational.45.325
  • Huai, W., Hu, Y., Zeng, Y., Han, J., (2012). Velocity distribution for open channel flows with suspended vegetation. Advances in Water Resources, 49, 56–61. https://doi.org/10.1016/J.ADVWATRES.2012.07.001
  • Huai, W., Xue, W., Qian, Z., (2015). Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Advances in Water Resources, 80, 30–42. https://doi.org/https://doi.org/10.1016/j.advwatres.2015.03.006
  • Huai, W.X., Zhang, J., Wang, W.J., Katul, G.G., (2019). Turbulence structure in open channel flow with partially covered artificial emergent vegetation. Journal of Hydrology, 573, 180–193. https://doi.org/10.1016/J.JHYDROL.2019.03.071
  • Huthoff, F., Roos, P.C., Augustijn, D.C.M., Hulscher, S.J.M.H., (2008). Interacting divided channel method for compound channel flow. Journal of Hydraulic Engineering 134(8), 1158–1165.
  • Islamova, A.G., Tkachenko, P.P., Shlegel, N.E., Strizhak, P.A., (2023). Effect of surface roughness of solid particles on the regimes and outcomes of their collisions with liquid droplets. Experimental Thermal and Fluid Science, 142, 110829. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2022.110829
  • Jebelli, A., Mahabadi, A., Saeid Zare, M., Ahmad, R., (2022). Numerical simulations of lateral input effect in an open channel to reduce disturbances in the mainstream channel using CFD. Water-Energy Nexus, 5, 39–49. https://doi.org/10.1016/J.WEN.2022.11.001
  • Kumar, S., Kumar, B., Deshpande, V., Agarwal, M., (2023). Predicting flow velocity in a vegetative alluvial channel using standalone and hybrid machine learning techniques. Expert Systems with Applications, 232, 120885. https://doi.org/10.1016/J.ESWA.2023.120885
  • Launder, B.E., Reece, G.J., Rodi, W., (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68, 537–566. https://doi.org/10.1017/S0022112075001814
  • Launder, B.E., Spalding, D.B., (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2
  • Li, C.W., Zeng, C., (2009). 3D Numerical modelling of flow divisions at open channel junctions with or without vegetation. Advances in Water Resources, 32(1), 49–60.https://doi.org/https://doi.org/10.1016/j.advwatres.2008.09.005
  • Li, G., Guo, Y., Mabuchi, T., Surblys, D., Ohara, T., Tokumasu, T., (2022). Prediction of the adsorption properties of liquid at solid surfaces with molecular scale surface roughness via encoding-decoding convolutional neural networks. Journal of Molecular Liquids, 349, 118489. https://doi.org/https://doi.org/10.1016/j.molliq.2022.118489
  • Li, Q., Zeng, Y. hong, Zha, W., (2020). Velocity distribution and turbulence structure of open channel flow with floating-leaved vegetation. Journal of Hydrology 590, 125298. https://doi.org/10.1016/J.JHYDROL.2020.125298
  • Liu, C., Shan, Y.Q., Yang, K.J., Liu, X.N., (2013). The characteristics of secondary flows in compound channels with vegetated floodplains. Journal of Hydrodynamics, Ser. B 25(3), 422–429. https://doi.org/10.1016/S1001-6058(11)60381-9
  • Lu, J., Dai, H.C., (2017). Three dimensional numerical modeling of flows and scalar transport in a vegetated channel. Journal of Hydro-environment Research 16, 27–33. https://doi.org/10.1016/J.JHER.2017.05.001
  • Malgarinos, I., Nikolopoulos, N., Gavaises, M., (2016). A numerical study on droplet-particle collision dynamics. International Journal of Heat and Fluid Flow 61(Part B), 499–509. https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.06.010
  • Nepf, H.M., (2011). Flow and Transport in Regions with Aquatic Vegetation. Annual Review of Fluid Mechanics 44, 123–142. https://doi.org/10.1146/annurev-fluid-120710-101048
  • Pizziol, B., Costa, M., Panão, M.O., Silva, A., (2018). Multiple impinging jet air-assisted atomization. Experimental Thermal and Fluid Science 96, 303–310. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.03.019
  • Pradhan, S., Khatua, K.K., (2020). Momentum transfer coefficients at the adjoining interfaces of a compound channel. Flow Measurement and Instrumentation 75, 101792. https://doi.org/10.1016/J.FLOWMEASINST.2020.101792
  • Sam Huang, H., Varshney, V., Wohlwend, J.L., Roy, A.K., (2013). Heat Transfer at Aluminum–Water Interfaces: Effect of Surface Roughness. Journal of Nanotechnology in Engineering and Medicine 3(3). https://doi.org/10.1115/1.4007584
  • Şibil, R., Aras, E., Kankal, M., (2021). Comparison of various turbulence model performance in computational fluid dynamics analyses of the oxidation ditches with experimental validation. Process Safety and Environmental Protection 154, 43–59. https://doi.org/10.1016/j.psep.2021.07.046
  • Skote, M., Henningson, D.S., Henkes, R.A.W.M., (1998). Direct numerical simulation of adverse pressure gradient turbulent boundary layers. Fluid Mechanics and its Applications 46, 171–174. https://doi.org/10.1007/978-94-011-5118-4_42
  • Stoesser, T., Salvador, G.P., Rodi, W., Diplas, P., (2009). Large eddy simulation of turbulent flow through submerged vegetation. Transport in Porous Media 78, 347–365. https://doi.org/10.1007/S11242-009-9371-8/METRICS
  • Tang, X., (2017). An improved method for predicting discharge of homogeneous compound channels based on energy concept. Flow Measurement and Instrumentation 57, 57–63. https://doi.org/10.1016/J.FLOWMEASINST.2017.08.005
  • Vargas-Luna, A., Crosato, A., Uijttewaal, W.S.J., (2015). Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surface Process and Landforms 40(2), 157–176. https://doi.org/https://doi.org/10.1002/esp.3633
  • Wang, C., Yu, J-y, Wang, P-f, Guo, P-c, (2009). Flow structure of partly vegetated open-channel flows with eelgrass. Journal of Hydrodynamics, Ser. B 21(3), 301–307. https://doi.org/10.1016/S1001-6058(08)60150-X
  • Wang, M., Avital, E., Chen, Q., Williams, J., Mi, S., Xie, Q., (2021a). A numerical study on suspended sediment transport in a partially vegetated channel flow. Journal of Hydrology 599, 126335. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126335
  • Wang, M., Avital, E., Korakianitis, T., Williams, J., Ai, K., (2021b). A numerical study on the influence of curvature ratio and vegetation density on a partially vegetated U-bend channel flow. Advances in Water Resources 148, 103843. https://doi.org/https://doi.org/10.1016/j.advwatres.2020.103843
  • Wang, W., Huai, W.X., Gao, M., (2014). Numerical investigation of flow through vegetated multi-stage compound channel. Journal of Hydrodynamics 26(3), 467–473. https://doi.org/10.1016/S1001-6058(14)60053-6
  • Wang, X., Huai, W., Cao, Z., (2022). An improved formula for incipient sediment motion in vegetated open channel flows. International Journal of Sediment Research 37(1), 47–53. https://doi.org/10.1016/J.IJSRC.2021.06.001
  • Wilcox, D.C., (2006.) -Turbulence Modeling for CFD, Third. ed. DCW Industries, Inc., California.
  • Xia, J., Zhang, Q., He, Z., Wang, J., Liu, R., Qian, Y., Ju, D., Lu, X., (2021). Experimental study on diesel’s twin injection and spray impingement characteristics under marine engine’s conditions. Fuel 302, 121133. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121133
  • Yakhot, V., Orszag, S.A., (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
  • Yang, C., Jeong, J., Kim, Y., Bang, B., Lee, U., (2021). Numerical simualtion of a circulating fluidized bed combustor and evaluation of empirical models for estimating solids volume fraction. Powder Technology 393, 786–795. https://doi.org/https://doi.org/10.1016/j.powtec.2021.08.001
  • Yang, Z., Li, D., Huai, W., Liu, J., (2019). A new method to estimate flow conveyance in a compound channel with vegetated floodplains based on energy balance. Journal of Hydrology 575, 921–929. https://doi.org/10.1016/J.JHYDROL.2019.05.078
  • Yılmazer, D., Ayna, G., Ozan, A.Y., Cihan, K., (2022). Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, 757–769. https://doi.org/10.25092/BAUNFBED.1066999
  • Zhang, C., Chen, Y., Peterson, G.P., (2014a). Thermal slip for liquids at rough solid surfaces. Physical Review E 89(6-1), 62407. https://doi.org/10.1103/PhysRevE.89.062407
  • Zhang, C., Deng, Z., Chen, Y., (2014b). Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal. International Journal of Heat and Mass Transfer 70, 322–329. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.10.080

The Effect of Near-Wall Treatment on The Determination of Flow Characteristics in Vegetated Channel Using Computational Fluid Dynamics

Yıl 2023, Cilt: 4 Sayı: 2, 109 - 123, 31.12.2023
https://doi.org/10.53501/rteufemud.1323845

Öz

In this study, the effect of different approaches to near-wall treatment, which is an important parameter in predicting the flow characteristics of vegetated-channels, was investigated. For this purpose, numerical simulations were conducted using the Ansys Fluent software, which could perform Computational Fluid Dynamics (CFD) analysis, for a three-dimensional, turbulent, incompressible, and steady flow condition in a rectangular channel vegetated-channel. In the numerical studies, different approaches for near-wall treatment were used to predict velocity distributions in the channel, and the results obtained from the numerical studies were compared with a previously conducted experimental study in the literature to determine the most successful method. The comparison revealed that the numerical study employing the "enhanced wall function" approach yielded the most accurate prediction results. Additionally, hydraulic characteristics in open-channel flow with vegetation were investigated by providing velocity distributions obtained from the CFD analysis.

Kaynakça

  • Aberle, J., Järvelä, J., (2013). Flow resistance of emergent rigid and flexible floodplain vegetation. Journal of Hydraulic Research 51(1), 33–45. https://doi.org/10.1080/00221686.2012.754795
  • Akkoca Azize, Tutar Mustafa, Şahin Beşir, (2005). Effect of Different Wall Functions on the Prediction of Flow and Heat Transfer Characteristics in Plate Fin and Tube Heat Exchangers. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 20(4), 77-86
  • ANSYS Fluent, (2013). ANSYS Fluent.
  • Anufriev, I.S., Baklanov, A.M., Borovkova, O. V, Vigriyanov, M.S., Leshchevich, V. V, Sharypov, O. V, (2017). Investigation of soot nanoparticles during combustion of liquid hydrocarbons with injection of a superheated steam jet into the reaction zone. Combustion, Explosion, and Shock Waves, 53(2), 140–148. https://doi.org/10.1134/S0010508217020034
  • Ben Meftah, M., Mossa, M., (2023). Discharge prediction in partly vegetated channel flows: Adaptation of IDCM method with a curved interface and large-scale roughness elements. Journal of Hydrology, 616, 128805. https://doi.org/10.1016/J.JHYDROL.2022.128805
  • Breitenbach, J., Kissing, J., Roisman, I. V, Tropea, C., (2018). Characterization of secondary droplets during thermal atomization regime. Experimental Thermal and Fluid Science, 98, 516–522. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.06.030
  • Cao, B.-Y., Sun, J., Chen, M., Guo, Z.-Y., (2009). Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review. International Journal of Molecular Sciences 10(11), 4638–4706. https://doi.org/10.3390/ijms10114638
  • Chen, S.-C., Kuo, Y.-M., Li, Y.-H., (2011). Flow characteristics within different configurations of submerged flexible vegetation. Journal of Hydrology, 398(1-2), 124–134. https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.12.018
  • Chen, X., Liu, Y., (2015). Finite Element Modeling and Simulation with Ansys Workbench. CR Press, Taylor&Francis Group.
  • De Marchis, M., Milici, B., Sardina, G., Napoli, E., (2016). Interaction between turbulent structures and particles in roughened channel. International Journal of Multiphase Flow, 78, 117–131. https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.011
  • Ferro, V., (2019). Assessing flow resistance law in vegetated channels by dimensional analysis and self-similarity. Flow Measurement and Instrumentation, 69, 101610. https://doi.org/10.1016/J.FLOWMEASINST.2019.101610
  • Han, L., Zeng, Y., Chen, L., Li, M., (2018). Modeling streamwise velocity and boundary shear stress of vegetation-covered flow. Ecological Indicators, 92, 379–387. https://doi.org/10.1016/J.ECOLIND.2017.04.012
  • Helmiö, T., (2004). Flow resistance due to lateral momentum transfer in partially vegetated rivers. Water Resources Research, 40 (5), W05206. https://doi.org/10.1029/2004WR003058
  • Hou, Q., Zou, Z., (2005). Comparison between standard and renormalization group k-ε models in numerical simulation of swirling flow tundish. ISIJ International, 45(3), 325–330. https://doi.org/10.2355/isijinternational.45.325
  • Huai, W., Hu, Y., Zeng, Y., Han, J., (2012). Velocity distribution for open channel flows with suspended vegetation. Advances in Water Resources, 49, 56–61. https://doi.org/10.1016/J.ADVWATRES.2012.07.001
  • Huai, W., Xue, W., Qian, Z., (2015). Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Advances in Water Resources, 80, 30–42. https://doi.org/https://doi.org/10.1016/j.advwatres.2015.03.006
  • Huai, W.X., Zhang, J., Wang, W.J., Katul, G.G., (2019). Turbulence structure in open channel flow with partially covered artificial emergent vegetation. Journal of Hydrology, 573, 180–193. https://doi.org/10.1016/J.JHYDROL.2019.03.071
  • Huthoff, F., Roos, P.C., Augustijn, D.C.M., Hulscher, S.J.M.H., (2008). Interacting divided channel method for compound channel flow. Journal of Hydraulic Engineering 134(8), 1158–1165.
  • Islamova, A.G., Tkachenko, P.P., Shlegel, N.E., Strizhak, P.A., (2023). Effect of surface roughness of solid particles on the regimes and outcomes of their collisions with liquid droplets. Experimental Thermal and Fluid Science, 142, 110829. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2022.110829
  • Jebelli, A., Mahabadi, A., Saeid Zare, M., Ahmad, R., (2022). Numerical simulations of lateral input effect in an open channel to reduce disturbances in the mainstream channel using CFD. Water-Energy Nexus, 5, 39–49. https://doi.org/10.1016/J.WEN.2022.11.001
  • Kumar, S., Kumar, B., Deshpande, V., Agarwal, M., (2023). Predicting flow velocity in a vegetative alluvial channel using standalone and hybrid machine learning techniques. Expert Systems with Applications, 232, 120885. https://doi.org/10.1016/J.ESWA.2023.120885
  • Launder, B.E., Reece, G.J., Rodi, W., (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68, 537–566. https://doi.org/10.1017/S0022112075001814
  • Launder, B.E., Spalding, D.B., (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2
  • Li, C.W., Zeng, C., (2009). 3D Numerical modelling of flow divisions at open channel junctions with or without vegetation. Advances in Water Resources, 32(1), 49–60.https://doi.org/https://doi.org/10.1016/j.advwatres.2008.09.005
  • Li, G., Guo, Y., Mabuchi, T., Surblys, D., Ohara, T., Tokumasu, T., (2022). Prediction of the adsorption properties of liquid at solid surfaces with molecular scale surface roughness via encoding-decoding convolutional neural networks. Journal of Molecular Liquids, 349, 118489. https://doi.org/https://doi.org/10.1016/j.molliq.2022.118489
  • Li, Q., Zeng, Y. hong, Zha, W., (2020). Velocity distribution and turbulence structure of open channel flow with floating-leaved vegetation. Journal of Hydrology 590, 125298. https://doi.org/10.1016/J.JHYDROL.2020.125298
  • Liu, C., Shan, Y.Q., Yang, K.J., Liu, X.N., (2013). The characteristics of secondary flows in compound channels with vegetated floodplains. Journal of Hydrodynamics, Ser. B 25(3), 422–429. https://doi.org/10.1016/S1001-6058(11)60381-9
  • Lu, J., Dai, H.C., (2017). Three dimensional numerical modeling of flows and scalar transport in a vegetated channel. Journal of Hydro-environment Research 16, 27–33. https://doi.org/10.1016/J.JHER.2017.05.001
  • Malgarinos, I., Nikolopoulos, N., Gavaises, M., (2016). A numerical study on droplet-particle collision dynamics. International Journal of Heat and Fluid Flow 61(Part B), 499–509. https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.06.010
  • Nepf, H.M., (2011). Flow and Transport in Regions with Aquatic Vegetation. Annual Review of Fluid Mechanics 44, 123–142. https://doi.org/10.1146/annurev-fluid-120710-101048
  • Pizziol, B., Costa, M., Panão, M.O., Silva, A., (2018). Multiple impinging jet air-assisted atomization. Experimental Thermal and Fluid Science 96, 303–310. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.03.019
  • Pradhan, S., Khatua, K.K., (2020). Momentum transfer coefficients at the adjoining interfaces of a compound channel. Flow Measurement and Instrumentation 75, 101792. https://doi.org/10.1016/J.FLOWMEASINST.2020.101792
  • Sam Huang, H., Varshney, V., Wohlwend, J.L., Roy, A.K., (2013). Heat Transfer at Aluminum–Water Interfaces: Effect of Surface Roughness. Journal of Nanotechnology in Engineering and Medicine 3(3). https://doi.org/10.1115/1.4007584
  • Şibil, R., Aras, E., Kankal, M., (2021). Comparison of various turbulence model performance in computational fluid dynamics analyses of the oxidation ditches with experimental validation. Process Safety and Environmental Protection 154, 43–59. https://doi.org/10.1016/j.psep.2021.07.046
  • Skote, M., Henningson, D.S., Henkes, R.A.W.M., (1998). Direct numerical simulation of adverse pressure gradient turbulent boundary layers. Fluid Mechanics and its Applications 46, 171–174. https://doi.org/10.1007/978-94-011-5118-4_42
  • Stoesser, T., Salvador, G.P., Rodi, W., Diplas, P., (2009). Large eddy simulation of turbulent flow through submerged vegetation. Transport in Porous Media 78, 347–365. https://doi.org/10.1007/S11242-009-9371-8/METRICS
  • Tang, X., (2017). An improved method for predicting discharge of homogeneous compound channels based on energy concept. Flow Measurement and Instrumentation 57, 57–63. https://doi.org/10.1016/J.FLOWMEASINST.2017.08.005
  • Vargas-Luna, A., Crosato, A., Uijttewaal, W.S.J., (2015). Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surface Process and Landforms 40(2), 157–176. https://doi.org/https://doi.org/10.1002/esp.3633
  • Wang, C., Yu, J-y, Wang, P-f, Guo, P-c, (2009). Flow structure of partly vegetated open-channel flows with eelgrass. Journal of Hydrodynamics, Ser. B 21(3), 301–307. https://doi.org/10.1016/S1001-6058(08)60150-X
  • Wang, M., Avital, E., Chen, Q., Williams, J., Mi, S., Xie, Q., (2021a). A numerical study on suspended sediment transport in a partially vegetated channel flow. Journal of Hydrology 599, 126335. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126335
  • Wang, M., Avital, E., Korakianitis, T., Williams, J., Ai, K., (2021b). A numerical study on the influence of curvature ratio and vegetation density on a partially vegetated U-bend channel flow. Advances in Water Resources 148, 103843. https://doi.org/https://doi.org/10.1016/j.advwatres.2020.103843
  • Wang, W., Huai, W.X., Gao, M., (2014). Numerical investigation of flow through vegetated multi-stage compound channel. Journal of Hydrodynamics 26(3), 467–473. https://doi.org/10.1016/S1001-6058(14)60053-6
  • Wang, X., Huai, W., Cao, Z., (2022). An improved formula for incipient sediment motion in vegetated open channel flows. International Journal of Sediment Research 37(1), 47–53. https://doi.org/10.1016/J.IJSRC.2021.06.001
  • Wilcox, D.C., (2006.) -Turbulence Modeling for CFD, Third. ed. DCW Industries, Inc., California.
  • Xia, J., Zhang, Q., He, Z., Wang, J., Liu, R., Qian, Y., Ju, D., Lu, X., (2021). Experimental study on diesel’s twin injection and spray impingement characteristics under marine engine’s conditions. Fuel 302, 121133. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121133
  • Yakhot, V., Orszag, S.A., (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
  • Yang, C., Jeong, J., Kim, Y., Bang, B., Lee, U., (2021). Numerical simualtion of a circulating fluidized bed combustor and evaluation of empirical models for estimating solids volume fraction. Powder Technology 393, 786–795. https://doi.org/https://doi.org/10.1016/j.powtec.2021.08.001
  • Yang, Z., Li, D., Huai, W., Liu, J., (2019). A new method to estimate flow conveyance in a compound channel with vegetated floodplains based on energy balance. Journal of Hydrology 575, 921–929. https://doi.org/10.1016/J.JHYDROL.2019.05.078
  • Yılmazer, D., Ayna, G., Ozan, A.Y., Cihan, K., (2022). Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, 757–769. https://doi.org/10.25092/BAUNFBED.1066999
  • Zhang, C., Chen, Y., Peterson, G.P., (2014a). Thermal slip for liquids at rough solid surfaces. Physical Review E 89(6-1), 62407. https://doi.org/10.1103/PhysRevE.89.062407
  • Zhang, C., Deng, Z., Chen, Y., (2014b). Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal. International Journal of Heat and Mass Transfer 70, 322–329. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.10.080
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrodinamik ve Hidrolik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Rahim Şibil 0000-0003-3233-9052

Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

APA Şibil, R. (2023). Bitki Örtülü Kanalların Akım Özelliklerinin Hesaplamalı Akışkanlar Dinamiği ile Belirlenmesinde Yakın Duvar Davranışının Etkisi. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 4(2), 109-123. https://doi.org/10.53501/rteufemud.1323845

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025