Araştırma Makalesi
BibTex RIS Kaynak Göster

Metal Kesme Atıksularının Arıtılmasında Elektrokimyasal Reaktöre Yenilenebilir Enerji Uygulaması: Prosesin Çift Kriterli Optimizasyonu

Yıl 2023, Cilt: 27 Sayı: 3, 474 - 484, 25.12.2023

Öz

Elektrokimyasal atıksu arıtma yöntemleri her türlü atıksu ve kirletici için etkin
bir şekilde kullanılmaktadır. Bu proseslerin en büyük olumsuz etkilerinden biri
prosesin enerji tüketimidir. Bu nedenle, çalışmanın amacı, metal kesme
atıksuyundan KOİ'nin ayrıştırılması için elektrokimyasal proseslerin bir alt bölümü
olarak doğrudan fotovoltaik güneş paneli entegrasyonu ile minimum enerji kullanan
bir Elektrokoagülasyon (EK) seçeneği geliştirmek olarak belirlenmiştir. EC
prosesinin pH, akım yoğunluğu (A.Y.) ve elektroliz süresi (E.S.) gibi işletme
parametrelerini optimize etmek için çift kriterli optimizasyon seçeneği ile RSM ile
Box-Behnken Tasarımı kullanılmıştır. KOİ giderimi ve enerji tüketimi modelin
yanıtları olarak değerlendirilmiş ve kuadratik model ile iyi uyum göstermişlerdir.
Ayrıca, tüm parametrelerin EC prosesi üzerinde etkili olduğu belirlenmiştir.
Optimum koşullar pH 7,48, A.Y. 30 A/m2, E.S. 65 dakika, enerji tüketimi 3,9 kWh/m3
ve arzu edilebilirlik 0,954 olarak bulunmuştur. Optimum koşullarda, EK sürecinin
enerji tüketimi kapalı ve güneşli havalarda sırasıyla %71 ve %1495 oranında güneş
panelinden karşılanmıştır. Özellikle güneşli havada güneş panelinden elde edilen
enerji, proses için gerekli olan enerjiden çok daha fazlasını üretmektedir.

Proje Numarası

1139B421902975

Kaynakça

  • [1] AlJaberi, F. Y., Ahmed, S. A., Makki, H. F., Naje, A. S., Zwain, H. M., Salman, A. D., Juzsakova, T., Viktor, S., T. Van, B., Le, P. C., Duong La, D., Woong Chang, S., Um, M. J., Ngo, H. H., Nguyen, D. D. 2023. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment Science of the Total Environment, 867, 161361.
  • [2] Solak, M., 2019. Treatment of Denim Product Manufacturing Wastewater by Hybrid Electrocoagulation /Electrooxidation Processes, Süleyman Demirel University, Journal of Natural and Applied Sciences, 23, 3, pp. 780-786.
  • [3] Nawarkar, C. J., Salkar, V. D., 2019. Solar powered Electrocoagulation system for municipal wastewater treatment, Fuel, 237, 222–226.
  • [4] Das, P. P., Sharma, M., Purkait, M. K. 2022. Recent progress on electrocoagulation process for wastewater treatment: A review, Separation and Purification Technology, 292, 121058.
  • [5] Gatsios, E., Hahladakis, J. N., Gidarakos, E. 2015. Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals, Journal of Environmental Management, 154, 117-127.
  • [6] Oden M. K., Sarı Erkan H. 2018. Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance, Process Safety and Environmental Protection 119, 207–217.
  • [7] Solak, M., Kılıç, M., Yazıcı, H., Baldan Pakdil, N. 2014. Economical Analysis of the Treatment of Marble Processing Wastewaters by Electrocoagulation and Chemical Coagulation Processes, Faculty of Engineering Engineering Sciences Journal, 16, 2, 13-26.
  • [8] Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., Oturan, M. A. 2012. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 87, 6, 614-620.
  • [9] Ghjair, A. Y., Abbar, A. H. 2023. Applications of advanced oxidation processes (Electro-Fenton and sono-electro-Fenton) for COD removal from hospital wastewater: Optimization using response surface methodology. Process Safety and Environmental Protection, 169, 481-492.
  • [10] Tak, B., Tak, B., Kim, Y., Park, Y., Yoon, Y., Min., G. 2015. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD). J. Industrial and Engineering Chemistry, 28, 307-315.
  • [11] Garg, K. K., Prasad, B. 2016. Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge, Journal of Environmental Chemical Engineering, 4, 1, 178-190.
  • [12] Solak, M. 2019. Optimization of the Electrocoagulation Process in the treatment of Chemical Spraying Wastewater: Box-Behnken Design, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1367-1377.
  • [13] Elnenay, A. M. H. Nassef, E., Malasha, G. F., Magid, M. H. A. 2007. Treatment of drilling fluids wastewater by electrocoagulation, Egyptian Journal of Petroleum, 26, 203–208.
  • [14] Demirbas, E., Kobya M. 2017. Operating cost and treatment of metalworking fluidwastewater by chemical coagulation and electrocoagulation processes, Process Safety and Environmental Protection, 105, 79–90.
  • [15] Zini, L. P., Longhi, M., Jonko, E., Giovanela, M. 2020. Treatment of automotive industry wastewater by electrocoagulation using commercial aluminum electrodes, Process Safety and Environmental Protection 142, 272–284.
  • [16] García-Orozco, V. M. Linares-Hernandez, I., Natividad, R., Balderas-Hernandez, P., AlanisRamírez, C., Barrera-Díaz, C. E., Roa-Morales, G. 2022. Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment, Journal of Environmental Chemical Engineering 10, 107969.
  • [17] Mohamad, Z., Razak, A. A., Krishnan, S., Singh, L., Zularisam, A. W., Nasrullah, M., 2022. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system Chemical Engineering Research and Design 177, 578–582
  • [18] Solak, M. 2023. Cost-Effective Processes for Denim Production Wastewater: Dual Criterial Optimization of Techno-Economical Parameters by RSM and Minimization of Energy Consumption of Photo Assisted Fenton Processes via Direct Photovoltaic Solar Panel Integration, Processes, 11, 7 1903.
  • [19] American Public Health Association (APHA), 2005. Standard Methods for the Examination of Waste and Wastewater (19th ed.), Washington.
  • [20] Nasrullah, M., Ansar, S., Krishnan S., Singh, L., Peera, S. G., Zularisam, A. W. 2022. Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application, Chemosphere 299, 134387.
  • [21] Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke D.L., 2001. Electrocoagulation (EC) Science and Applications. Journal of Hazardous Materials, 84, 29-41.
  • [22] Lu, J., Zhang, P., Li, J. 2021. Electrocoagulation technology for water purification: an update review on reactor design and some newly concerned pollutants removal, J. Environ. Manag. 296 (2021), 113259.
  • [23] Anuf, A. R., Ramaraj, K., Sivasankarapillai, V. S., Dhanusuraman, R., Maran, J. P., Rajeshkumar, G., Rahdare, A., Díez-Pascual, A M., 2022. Optimization of electrocoagulation process for treatment of rice mill effluent using response surface methodology, Journal of Water Process Engineering, 49, 103074.
  • [24] Merzouk, B., Madani, K., Sekki, A. 2010. Using electrocoagulation – electroflotation technology to treat synthetic solution and textile wastewater, two case studies, DES 250, 573–577.
  • [25] Singh, S., Singh, S., Lo, S. L., & Kumar, N. (2016). Electrochemical treatment of Ayurveda pharmaceuticals wastewater: optimization and characterization of sludge residue. Journal of the Taiwan Institute of Chemical Engineers, 67, 385- 396.
  • [26] Pantorlawn, W., Khanitchaidech W., Threrujirapapong T., Channei, D., Nakaruk, A. 2018. Electrocoagulation for spent coolant from machinery industry, J Water Reuse, Desalination, 8, 497–506.
  • [27] Rajaniemi, K., Rauliob, M., Tuomikoskia, S., Lassia U. 2019. Comparison of batch and novel continuous electrocoagulation processes in the treatment of paint industry wash water, Desalination and Water Treatment, 170, 394–404.
  • [28] Dubey, S., Joshi, A., Parmar, N., Amitesh, C. R., Prajapati, A K. 2023. Process optimization of electrocoagulation reactor for treatment of distillery effluent using aluminium electrode: Response surface methodology approach, Chemical Data Collections 45, 101023.
  • [29] Kobya, M., Çiftçi, C., Bayramoğlu, M., Sensoy, M. T. 2008. Study on the treatment of waste metal cutting fluids using electrocoagulation, Sep. Purif. Technol., 60 285–291.
  • [30] Karmankar, S. B., Sharma, A., Ahirwar R. C., Mehra, S., Pal, D., Prajapati A. K. 2023. Cost cutting approach of distillery effluent treatment using solar photovoltaic cell driven electrocoagulation: Comparison with conventional electrocoagulation, Journal of Water Process Engineering, 54, 103982

A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process

Yıl 2023, Cilt: 27 Sayı: 3, 474 - 484, 25.12.2023

Öz

Electrochemical wastewater treatment methods are effectively used for
all type of wastewaters and pollutants. One of the huge negative impact of these
processes is the energy consumption of the process. Therefore, the goal of the study
is to develop a minimal energy user Electrocoagulation (EC) option with an
integration of a direct photovoltaic solar panel as a subsection of electrochemical
processes for the degradation of low COD (Chemical Oxygen Demand) from metal
cutting wastewater. To optimize the operating parameters of the EC process such as
pH, current density (C.D.) and electrolysis time (E.T.) Box-Behnken Design by RSM
was used with a double criterial optimization option. COD removal and energy
consumption were evaluated as responses of the model and they were well-fitted
with the quadratic model. Also, it was determined that all parameters are effective
on EC process. Optimum conditions were found at a pH of 7.48, a C.D. of 30 A/m2, an
E.T. of 65 min, an energy consumption of 3.9 kWh/m3 and a desirability of 0.954. At
the optimum conditions, the energy consumption of the EC process was fulfilled
from solar panel in a ratio of 71% and 1495% in overcast and sunny weather,
respectively. Especially, the energy obtained by the solar panel in the sunny weather
produces much more than the energy required of the process.

Destekleyen Kurum

TÜBİTAK BİDEB

Proje Numarası

1139B421902975

Teşekkür

This work was financed by the TÜBİTAK BİDEB with grant number of 1139B421902975. The authors thank to TÜBİTAK for its support.

Kaynakça

  • [1] AlJaberi, F. Y., Ahmed, S. A., Makki, H. F., Naje, A. S., Zwain, H. M., Salman, A. D., Juzsakova, T., Viktor, S., T. Van, B., Le, P. C., Duong La, D., Woong Chang, S., Um, M. J., Ngo, H. H., Nguyen, D. D. 2023. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment Science of the Total Environment, 867, 161361.
  • [2] Solak, M., 2019. Treatment of Denim Product Manufacturing Wastewater by Hybrid Electrocoagulation /Electrooxidation Processes, Süleyman Demirel University, Journal of Natural and Applied Sciences, 23, 3, pp. 780-786.
  • [3] Nawarkar, C. J., Salkar, V. D., 2019. Solar powered Electrocoagulation system for municipal wastewater treatment, Fuel, 237, 222–226.
  • [4] Das, P. P., Sharma, M., Purkait, M. K. 2022. Recent progress on electrocoagulation process for wastewater treatment: A review, Separation and Purification Technology, 292, 121058.
  • [5] Gatsios, E., Hahladakis, J. N., Gidarakos, E. 2015. Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals, Journal of Environmental Management, 154, 117-127.
  • [6] Oden M. K., Sarı Erkan H. 2018. Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance, Process Safety and Environmental Protection 119, 207–217.
  • [7] Solak, M., Kılıç, M., Yazıcı, H., Baldan Pakdil, N. 2014. Economical Analysis of the Treatment of Marble Processing Wastewaters by Electrocoagulation and Chemical Coagulation Processes, Faculty of Engineering Engineering Sciences Journal, 16, 2, 13-26.
  • [8] Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., Oturan, M. A. 2012. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 87, 6, 614-620.
  • [9] Ghjair, A. Y., Abbar, A. H. 2023. Applications of advanced oxidation processes (Electro-Fenton and sono-electro-Fenton) for COD removal from hospital wastewater: Optimization using response surface methodology. Process Safety and Environmental Protection, 169, 481-492.
  • [10] Tak, B., Tak, B., Kim, Y., Park, Y., Yoon, Y., Min., G. 2015. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD). J. Industrial and Engineering Chemistry, 28, 307-315.
  • [11] Garg, K. K., Prasad, B. 2016. Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge, Journal of Environmental Chemical Engineering, 4, 1, 178-190.
  • [12] Solak, M. 2019. Optimization of the Electrocoagulation Process in the treatment of Chemical Spraying Wastewater: Box-Behnken Design, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1367-1377.
  • [13] Elnenay, A. M. H. Nassef, E., Malasha, G. F., Magid, M. H. A. 2007. Treatment of drilling fluids wastewater by electrocoagulation, Egyptian Journal of Petroleum, 26, 203–208.
  • [14] Demirbas, E., Kobya M. 2017. Operating cost and treatment of metalworking fluidwastewater by chemical coagulation and electrocoagulation processes, Process Safety and Environmental Protection, 105, 79–90.
  • [15] Zini, L. P., Longhi, M., Jonko, E., Giovanela, M. 2020. Treatment of automotive industry wastewater by electrocoagulation using commercial aluminum electrodes, Process Safety and Environmental Protection 142, 272–284.
  • [16] García-Orozco, V. M. Linares-Hernandez, I., Natividad, R., Balderas-Hernandez, P., AlanisRamírez, C., Barrera-Díaz, C. E., Roa-Morales, G. 2022. Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment, Journal of Environmental Chemical Engineering 10, 107969.
  • [17] Mohamad, Z., Razak, A. A., Krishnan, S., Singh, L., Zularisam, A. W., Nasrullah, M., 2022. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system Chemical Engineering Research and Design 177, 578–582
  • [18] Solak, M. 2023. Cost-Effective Processes for Denim Production Wastewater: Dual Criterial Optimization of Techno-Economical Parameters by RSM and Minimization of Energy Consumption of Photo Assisted Fenton Processes via Direct Photovoltaic Solar Panel Integration, Processes, 11, 7 1903.
  • [19] American Public Health Association (APHA), 2005. Standard Methods for the Examination of Waste and Wastewater (19th ed.), Washington.
  • [20] Nasrullah, M., Ansar, S., Krishnan S., Singh, L., Peera, S. G., Zularisam, A. W. 2022. Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application, Chemosphere 299, 134387.
  • [21] Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke D.L., 2001. Electrocoagulation (EC) Science and Applications. Journal of Hazardous Materials, 84, 29-41.
  • [22] Lu, J., Zhang, P., Li, J. 2021. Electrocoagulation technology for water purification: an update review on reactor design and some newly concerned pollutants removal, J. Environ. Manag. 296 (2021), 113259.
  • [23] Anuf, A. R., Ramaraj, K., Sivasankarapillai, V. S., Dhanusuraman, R., Maran, J. P., Rajeshkumar, G., Rahdare, A., Díez-Pascual, A M., 2022. Optimization of electrocoagulation process for treatment of rice mill effluent using response surface methodology, Journal of Water Process Engineering, 49, 103074.
  • [24] Merzouk, B., Madani, K., Sekki, A. 2010. Using electrocoagulation – electroflotation technology to treat synthetic solution and textile wastewater, two case studies, DES 250, 573–577.
  • [25] Singh, S., Singh, S., Lo, S. L., & Kumar, N. (2016). Electrochemical treatment of Ayurveda pharmaceuticals wastewater: optimization and characterization of sludge residue. Journal of the Taiwan Institute of Chemical Engineers, 67, 385- 396.
  • [26] Pantorlawn, W., Khanitchaidech W., Threrujirapapong T., Channei, D., Nakaruk, A. 2018. Electrocoagulation for spent coolant from machinery industry, J Water Reuse, Desalination, 8, 497–506.
  • [27] Rajaniemi, K., Rauliob, M., Tuomikoskia, S., Lassia U. 2019. Comparison of batch and novel continuous electrocoagulation processes in the treatment of paint industry wash water, Desalination and Water Treatment, 170, 394–404.
  • [28] Dubey, S., Joshi, A., Parmar, N., Amitesh, C. R., Prajapati, A K. 2023. Process optimization of electrocoagulation reactor for treatment of distillery effluent using aluminium electrode: Response surface methodology approach, Chemical Data Collections 45, 101023.
  • [29] Kobya, M., Çiftçi, C., Bayramoğlu, M., Sensoy, M. T. 2008. Study on the treatment of waste metal cutting fluids using electrocoagulation, Sep. Purif. Technol., 60 285–291.
  • [30] Karmankar, S. B., Sharma, A., Ahirwar R. C., Mehra, S., Pal, D., Prajapati A. K. 2023. Cost cutting approach of distillery effluent treatment using solar photovoltaic cell driven electrocoagulation: Comparison with conventional electrocoagulation, Journal of Water Process Engineering, 54, 103982
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Murat Solak 0000-0003-1542-1599

Tuğba Arslan 0000-0003-1701-7266

Ahmet Akburak 0000-0003-1321-4641

Proje Numarası 1139B421902975
Yayımlanma Tarihi 25 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Solak, M., Arslan, T., & Akburak, A. (2023). A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 474-484. https://doi.org/10.19113/sdufenbed.1308753
AMA Solak M, Arslan T, Akburak A. A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process. SDÜ Fen Bil Enst Der. Aralık 2023;27(3):474-484. doi:10.19113/sdufenbed.1308753
Chicago Solak, Murat, Tuğba Arslan, ve Ahmet Akburak. “A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 3 (Aralık 2023): 474-84. https://doi.org/10.19113/sdufenbed.1308753.
EndNote Solak M, Arslan T, Akburak A (01 Aralık 2023) A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 3 474–484.
IEEE M. Solak, T. Arslan, ve A. Akburak, “A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process”, SDÜ Fen Bil Enst Der, c. 27, sy. 3, ss. 474–484, 2023, doi: 10.19113/sdufenbed.1308753.
ISNAD Solak, Murat vd. “A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/3 (Aralık 2023), 474-484. https://doi.org/10.19113/sdufenbed.1308753.
JAMA Solak M, Arslan T, Akburak A. A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process. SDÜ Fen Bil Enst Der. 2023;27:474–484.
MLA Solak, Murat vd. “A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 3, 2023, ss. 474-8, doi:10.19113/sdufenbed.1308753.
Vancouver Solak M, Arslan T, Akburak A. A Renewable Energy Application to the Electrochemical Reactor in the Treatment of Metal Cutting Wastewater: Double Criteria Optimization of Process. SDÜ Fen Bil Enst Der. 2023;27(3):474-8.

e-ISSN: 1308-6529