Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı

Yıl 2024, Cilt: 28 Sayı: 1, 42 - 52, 27.04.2024
https://doi.org/10.19113/sdufenbed.1360161

Öz

Mısır koçanı, mısır hasatı sırasında oluşan tarımsal bir atıktır. Bu atığın
depolanması çeşitli teknik, sosyal ve çevresel sorunlar oluşturmaktadır. Mısır
koçanının yakılmasıyla üretilen atık külden alternatif bağlayıcı malzemeler
üretilebilmektedir. Bu araştırmanın amacı, atık mısır koçanı külü içeren metakaolin
esaslı jeopolimer harcın fiziksel, mekanik ve ısıl özelikleri üzerinde mısır koçanı
külü oranının etkilerini ve üretilen malzemenin yapı sektöründe kullanım
olanaklarını belirlemektir. Alkali aktivatör olarak 10 molar sodyum hidroksit ve
sodyum silikat çözeltileri kullanılmıştır. Metakaolin:mısır koçanı külü oranı
ağırlıkça 100:0, 70:30, 50:50, 30:70 ve 0:100 olarak hazırlanan karışımlar, 24±2°C
ve %60±5 bağıl nemli ortam koşullarında 28 gün kürlenmiştir. Çalışma sonucunda,
en düşük porozite (%14.24), su emme oranı (%5.56) ve en yüksek birim hacim
ağırlık (1.99 g/cm3), ultrases hızı (2.71 km/s), elastiklik modülü (14.61 GPa),
eğilmede çekme (3.87 MPa) ve basınç dayanımı (18.76 MPa) %70 metakaolin ve
%30 mısır koçanı külü içeren harçta elde edilmiştir. Harcın ısı iletkenlik katsayısı
0.21-1.22 W/mK aralığındadır ve atık kül oranı arttıkça bu değer azalmaktadır. Yani,
ısıl performans kriterlerinin önemli olduğu uygulamalarda atık kül oranı daha
yüksek malzeme üretilebilmektedir. Üretilen jeopolimer harçlar, yapı sektöründeki
geleneksel harç ve sıvaların gereksinimlerini karşıladığından, bu malzemelere
alternatif olarak kullanılma potansiyeline sahiptir.

Kaynakça

  • [1] Bai, X., Dawson, R. J., Ü rge-Vorsatz, D., Delgado, G. C., Barau, A. S., Dhakal, S. 2018. Six Research Priorities for Cities and Climate Change. Nature, 555(7694), 23-25.
  • [2] Malhotra, V. M. 2002. Introduction: Sustainable Development and Concrete Technology. Concrete International, 24(7), 22.
  • [3] Sperling, F., Granoff, I., Northrop, E., Olhoff, A., Gale, A. S. 2016. Bridging The Gap – The Sustainable Development Goals and Climate Change Mitigation. ss 40-47. In The Emissions Gap Report 2016: A Unep Synthesis Report, UNEP DTU Partnership.
  • [4] Sustainable Development Goals. 2015. Transforming Our World: The 2030 Agenda for Sustainable Development, Report of the United Nations Statistics https://unstats.un.org/sdgs 21.08.2023). Division. (Erişim Tarihi:
  • [5] Sustainable Development Goals. 2017. The Sustainable Development Goals Report of the United Nations Statistics Division, United Nations Publication issued by the Department of Economic and Social Affairs (DESA). https://unstats.un.org/sdgs (Erişim 22.08.2023). Tarihi:
  • [6] Xie, T., Visintin, P. 2018. A Unified Approach for Mix Design of Concrete Containing Supplementary Cementitious Materials Based on Reactivity Moduli. Journal of Cleaner Production, 203, 68-82.
  • [7] Palomo, A., Grutzeck, M. W., Blanco, M. T. 1999. Alkali-Activated Fly Ashes: A Cement for the Future. Cement and Concrete Research, 29(8), 93-102.
  • [8] Dave, N., Misra, A. K., Srivastava, A., Sharma, A. K., Kaushik, S. K. 2017. Study on Quaternary Concrete Microstructure, Strength, Durability Considering the Influence of Multi-factors.
  • [9] Davidovits, J. 2013. Geopolymer Cement: A Review. http://www.geopolymer.org/ library/technical-papers/21-geopolymer cement-review. (Erişim Tarihi: 24.05.2023).
  • [10] Tsai, W. T., Chang, C. Y, Wang, S. Y., Chang, C. F., Chien, S. F., Sun, H. F. 2001. Cleaner Production of Carbon Adsorbents by Utilizing Agricultural Waste Corn Cob. Resources, Conservation and Recycling, 32(1), 43-53.
  • [11] Alaneme, G. U., Olonade, K. A., Esenogho, E. 2023. Eco-friendly Agro-waste Based Geopolymer Concrete: A Systematic Review. Discover Materials, 3(14).
  • [12] Raheem, A., Oyebisi, S. O., Akintayo, S. O., Oyeniran, M. O. 2010. Effects of Admixture on the Properties of Corncob Ash Cement Concrete. Leonardo Electronic Journal of Practices and Technologies, 16, 13-20.
  • [13] Kamau, J., Ahmed, A., Hirst, P., Kangwa, J. 2016. Suitability of Corncob Ash as a Supplementary Cementitious Material. International Journal of Material Science and Engineering, 4(4), 215-228.
  • [14] Adesanya, D. A., Raheem, A. A. 2009. A Study of the Workability and Compressive Strength Characteristics of Corn Cob Ash Blended Portland Cement Concrete. Construction and Building Materials, 23(1), 311-317.
  • [15] Shakouri, M., Exstrom, C. L., Ramanathan, S., Suraneni, P. 2020. Hydration, Strength, and Durability of Cementitious Materials Incorporating Untreated Corn Cob Ash. Construction and Building Materials, 243, 118171.
  • [16] Raheem, A. A., Adesanya. D. A. 2011. A Study of Thermal Conductivity of Corn Cob Ash Blended Cement Mortar. The Pacific Journal of Science and Technology, 12(2), 106-111.
  • [17] Oyebisi, S., Ede, A., Ofuyatan, O., Oluwafemi, J., Akinwumi, I. 2018. Comparative Study of Corncob Ash-Based Lateritic Interlocking and Sandcrete Hollow Blocks. International Journal of GEOMATE, 15(51), 209-216.
  • [18] Oyebisi, S., Ede, A., Olutoge, F., Ofuyatan, O., Alayande, T. 2019. Building a Sustainable World: Economy Index of Geopolymer Concrete. 10th International Structural Engineering and Construction Conference (ISEC-10), 20-25 Mayıs, Chicago, 1-6.
  • [19] Oyebisi, S., Ede, A., Ofuyatan, O., Alayande, T., Mark, G., Jolayemi, J., Ayegbo, S. 2018. Effects of 12 Molar Concentration of Sodium Hydroxide on the Compressive Strength of Geopolymer Concrete. IOP Conference Series: Materials Science and Engineering, 413, 012066. 50
  • [20] Oyebisi, S., Ede, A., Olutoge, F., Igba, T., Ramonu, J. 2019. Rheology of Slag-Based Geopolymer Concrete Using Corncob Ash as A Pozzolanic Material. IOP Conference Series: Materials Science and Engineering, 640(1), 012057.
  • [21] Oyebisi, S., Ede, A., Olutoge, F., Omole, D. 2020a. Geopolymer Concrete Incorporating Agro industrial Wastes: Effects on Mechanical Properties, Microstructural Behaviour and Mineralogical Phases. Construction and Building Materials, 256, 119390.
  • [22] Oyebisi, S., Ede, A., Olutoge, F., Ogbiye, S. 2020b. Evaluation of Reactivity Indexes and Durability Properties of Slag-Based Geopolymer Concrete Incorporating Corn Cob Ash. Construction and Building Materials, 258, 119604.
  • [23] Oyebisi, S., Owamah, H., Ede, A. 2021. Flexural Optimization of Slag-based Geopolymer Concrete Beams Modified with Corn Cob Ash. Scientia Iranica, 28(5), 2582-2595.
  • [24] Oyebisi, S., Ede, A., Olutoge, F., Owamah, H., Igba, T. 2022. Slag-based Geopolymer Concrete Incorporating Ash: Effects on Thermal Performance. Australian Journal of Civil Engineering, 20(1), 208-221.
  • [25] Murthi, P., Poongodi, K., Saravanan, R., Rajesh Chary, K., Gobinath, R. 2020. Effect of the Ratio Between Na2SiO3 and NaOH Solutions and Curing Temperature on the Early Age Properties of Geopolymer Mortar. IOP Conference Series: Materials Science and Engineering, 981(3), 032060.
  • [26] Saloni, Parveen, Pham, T. M., Lim, Y. Y., Pradhan, S. S., Jatin, Kumar, J. 2021. Performance of Rice Husk Ash-Based Sustainable Geopolymer Concrete with Ultra-Fine Slag and Corn Cob Ash. Construction and Building Materials, 279, 122526.
  • [27] Arif, R., Iqtidar, A., Khattak, S. U. 2023. Utilizing Corn Cob Ash and Bauxite as One-Part Geopolymer: A Sustainable Approach for Construction Materials. Engineering Proceedings, 44(1), 18.
  • [28] TS EN 196-6, 2020. Çimento Deney Yöntemleri Bölüm 6: İncelik Tayini. Türk Standartları Enstitüsü, Ankara.
  • [29] TS EN 196-1, 2016. Çimento Deney Metotları Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara.
  • [30] TS 25, 2008. Doğal Puzolan (Tras)-Çimento ve Betonda Kullanılan-Tarifler, Gerekler ve Uygunluk Kriterleri. Türk Standartları Enstitüsü, Ankara.
  • [31] BS 8615, 2019. Specification for Pozzolanic Materials for Use with Portland Cement High Reactivity Natural Calcined Pozzolana. British Standards Institute, London.
  • [32] ASTM C618, 2022. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Washington, D.C.
  • [33] Nath, P., Sarker, P. K. 2014. Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition. Construction and Building Materials, 66, 163-171.
  • [34] Oyebisi, S., Ede, A., Olutoge, F., Ofuyatan, O., Oluwafemi, J. 2018. Influence of Alkali Concentrations on the Mechanical Properties of Geopolymer Concrete. International Journal of Civil Engineering and Technology, 9(8), 734-743.
  • [35] Abdul-Manan, D. 2016. Exploring the Potential of Alternative Pozzolana Cement for the Northern Savannah Ecological Zone in Ghana. American Journal of Civil Engineering, 4(30), 74-79.
  • [36] Olofintuyi, I., Oluborode, K. 2015. Strength Evaluation of Corn Cob Ash in a Blended Portland Cement. International Journal of Web Engineering and Technology, 9001(12), 2277 3754.
  • [37] Price, A. A., Yeargin, R., Fini, E. H., Abu-Lebdeh, T. 2014. Investigating Effects of the Introduction of Corncob Ash into Portland Cements Concrete: Mechanical and Thermal Properties. American Journal of Engineering and Applied Sciences, 7, 137-148.
  • [38] TS EN 12350-5, 2019. Taze Beton Deneyleri Bölüm 5: Yayılma Tablası Deneyi. Türk Standartları Enstitüsü, Ankara.
  • [39] TS EN 196-3, 2017. Çimento Deney Yöntemleri Bölüm 3: Priz Süreleri ve Genleşme Tayini. Türk Standartları Enstitüsü, Ankara.
  • [40] TS EN 1015-10, 2001. Kagir Harcı-Deney Metotları – Bölüm 10: Sertleşmiş Harcın Boşluklu Kuru Birim Hacim Kütlesinin Tayini. Türk Standartları Enstitüsü, Ankara.
  • [41] TS EN 13755, 2014. Doğal Taşlar-Deney Yöntemleri – Atmosfer Basıncında Su Emme Tayini. Türk Standartları Enstitüsü, Ankara.
  • [42] TS 699, 2009. Doğal Yapı Taşları- İnceleme ve Laboratuvar Deney Yöntemleri. Standartları Enstitüsü, Ankara. Türk
  • [43] TS EN 14579, 2015. Doğal Taşlar-Deney Yöntemleri – Ses Hızı İlerlemesinin Tayini. Türk Standartları Enstitüsü, Ankara.
  • [44] ASTM C518-17, 2021. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Appatatus. ASTM International, Washington, D.C. 51
  • [45] Afriansya, R., Astuti, P., Ratnadewati, V. S., Randisyah, J., Ramadhona, T. Y., Anisa, E. A. 2021. Investigation of Setting Time and Flowability of Geopolymer Mortar Using Local Industry and Agriculture Waste as Precursor in Indonesia. International Journal of GEOMATE, 21(87), 64 69.
  • [46] Saleh, F., Prayuda, H., Monika, F., Pratama, M. M. A. 2019. Characteristics Comparison on Mechanical Properties of Mortars using Agriculture Waste as a Cement Replacement Materials. IOP Conference Series: Materials Science and Engineering, 650(1), 012039.
  • [47] Ghosh, K., Ghosh, P. 2012. Effect of Na2O/Al2O3, SiO2/Al2O3 and W/B Ratio on Setting Time and Workability of Fly Ash Based Geopolymer. International Journal of Engineering Research and Applications, 2(4), 2142-2147.
  • [48] Wijaya, S. W., Hardjito, D. 2016. Factors Affecting the Setting Time of Fly Ash-Based Geopolymer. Materials Science Forum, 841, 90-97.
  • [49] Chen, X., Sutrisno, A., Struble, L. J. 2018. Effects of Calcium on Setting Mechanism of Metakaolin Based Geopolymer. Journal of the American Ceramic Society, 101(2), 957-968.
  • [50] Senff, L., Barbetta, P. A., Repette, W. L., Hotza, D., Paiva, H., Ferreira, V. M., Labrincha, J. A. 2009. Mortar Composition Defined According to Rheometer and Flow Table Tests Using Factorial Designed Experiments. Construction and Building Materials, 23(10), 3107-3111.
  • [51] Al-Majidi, M. H., Lampropoulos, A., Cundy, A., Meikle, S. 2016. Development of Geopolymer Mortar under Ambient Temperature for In Situ Applications. Construction Materials, 120, 198-211. and Building
  • [52] Huseien, G. F., Ismail, M., Khalid, N. H. A., Hussin, M. W., Mirza, J. 2018. Compressive Strength and Microstructure of Assorted Wastes Incorporated Geopolymer Mortars: Effect of Solution Molarity. Alexandria Engineering Journal, 57(4), 3375 3386.
  • [53] Garcia-Lodeiro, I., Palomo, A., Ferná ndez Jimé nez, A. 2015. An Overview of the Chemistry of Alkali-Activated Cement-Based Binders. ss 19 47. Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., Chindaprasirt, P., ed. 2015. Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 26.
  • [54] Luhar, S., Chaudhary, S., Luhar, I. 2019. Development of Rubberized Geopolymer Concrete: Strength and Durability Studies. Construction and Building Materials, 204, 740 753.
  • [55] Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V. M. C. F., Varum, H. 2012. Corn Cob Lightweight Concrete for Non Structural Applications. Construction and Building Materials, 34, 346-351.
  • [56] Prud'homme, E., Joussein, E., Rossignol, S. 2015. Alkali-Activated Concrete Binders as Inorganic Thermal Insulator Materials. ss 687-728. Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., Chindaprasirt, P., ed. 2015. Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 26.
  • [57] Schulle, W., Schlegel, E. 1991. Fundamentals and Properties of Refractory Thermal Insulating Materials. Interceramics, 40(7), 1-12.
  • [58] Wei, S., Yiqiang, C., Yunsheng, Z., Jones, M. R. 2013. Characterization and Simulation of Microstructure and Thermal Properties of Foamed Concrete. Construction and Building Materials, 47, 1278-1291.
  • [59] Incropera, F. P., DeWitt, D. P. 2002. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York.
  • [60] TS 825, 2013. Binalarda Isı Yalıtım Kuralları. Türk Standartları Enstitüsü, Ankara.
  • [61] Ersen, A., Gürdal, E., Güleç, A. 2011. Geleneksel Harçlar ve Koruma Harçları, Bağ layıcı Olarak Kullanılacak Kireç ve Hidrolik Kireçli, Puzzolanlı, Tuğ la Tozlu ve Tuğ la Kırıklı Harçlardaki Malzeme Oranlarının Belirlenmesi Çalışması Raporu. http://dergipark.org.tr/tr/download/issue file/23374. (Erişim Tarihi: 21.01.2023).
  • [62] ASTM C150, 2012. Standard Specification for Portland Cement. Washington, D.C.

Use of Waste Corn Cob Ash in Geopolymer Mortar Production

Yıl 2024, Cilt: 28 Sayı: 1, 42 - 52, 27.04.2024
https://doi.org/10.19113/sdufenbed.1360161

Öz

Corn cob is an agricultural waste generated during the corn harvest.
Storage of this waste creates various technical, social, and environmental problems.
Alternative binder materials can be produced from the waste ash produced by
burning corn cobs. The aim of this research is to determine the effects of the corn
cob ash ratio on the physical, mechanical, and thermal properties of metakaolin
based geopolymer mortar containing waste corn cob ash and the usage possibilities
of the produced material in the construction sector. 10 molar sodium hydroxide and
sodium silicate solutions were used as alkaline activators. The mixtures prepared
with metakaolin:corn cob ash ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 by
weight were cured for 28 days under environmental conditions of 24±2°C and
60±5% relative humidity. As a result of the study, the lowest porosity (14.24%),
water absorption ratio (5.56%), and the highest unit weight (1.99 g/cm3),
ultrasound velocity (2.71 km/s), modulus of elasticity (14.61 GPa), flexural strength
(3.87 MPa), and compressive strength (18.76 MPa) were obtained in the mortar
containing 70% metakaolin and 30% corn cob ash. The thermal conductivity
coefficient of the mortar is in the range of 0.21-1.22 W/mK, and this value decreases
as the waste ash ratio increases. In other words, in applications where thermal
performance criteria are important, materials with a higher waste ash content can
be produced. Since the produced geopolymer mortars meet the requirements of
traditional mortars and plasters in the construction industry, they have the potential
to be used as an alternative to these materials.

Kaynakça

  • [1] Bai, X., Dawson, R. J., Ü rge-Vorsatz, D., Delgado, G. C., Barau, A. S., Dhakal, S. 2018. Six Research Priorities for Cities and Climate Change. Nature, 555(7694), 23-25.
  • [2] Malhotra, V. M. 2002. Introduction: Sustainable Development and Concrete Technology. Concrete International, 24(7), 22.
  • [3] Sperling, F., Granoff, I., Northrop, E., Olhoff, A., Gale, A. S. 2016. Bridging The Gap – The Sustainable Development Goals and Climate Change Mitigation. ss 40-47. In The Emissions Gap Report 2016: A Unep Synthesis Report, UNEP DTU Partnership.
  • [4] Sustainable Development Goals. 2015. Transforming Our World: The 2030 Agenda for Sustainable Development, Report of the United Nations Statistics https://unstats.un.org/sdgs 21.08.2023). Division. (Erişim Tarihi:
  • [5] Sustainable Development Goals. 2017. The Sustainable Development Goals Report of the United Nations Statistics Division, United Nations Publication issued by the Department of Economic and Social Affairs (DESA). https://unstats.un.org/sdgs (Erişim 22.08.2023). Tarihi:
  • [6] Xie, T., Visintin, P. 2018. A Unified Approach for Mix Design of Concrete Containing Supplementary Cementitious Materials Based on Reactivity Moduli. Journal of Cleaner Production, 203, 68-82.
  • [7] Palomo, A., Grutzeck, M. W., Blanco, M. T. 1999. Alkali-Activated Fly Ashes: A Cement for the Future. Cement and Concrete Research, 29(8), 93-102.
  • [8] Dave, N., Misra, A. K., Srivastava, A., Sharma, A. K., Kaushik, S. K. 2017. Study on Quaternary Concrete Microstructure, Strength, Durability Considering the Influence of Multi-factors.
  • [9] Davidovits, J. 2013. Geopolymer Cement: A Review. http://www.geopolymer.org/ library/technical-papers/21-geopolymer cement-review. (Erişim Tarihi: 24.05.2023).
  • [10] Tsai, W. T., Chang, C. Y, Wang, S. Y., Chang, C. F., Chien, S. F., Sun, H. F. 2001. Cleaner Production of Carbon Adsorbents by Utilizing Agricultural Waste Corn Cob. Resources, Conservation and Recycling, 32(1), 43-53.
  • [11] Alaneme, G. U., Olonade, K. A., Esenogho, E. 2023. Eco-friendly Agro-waste Based Geopolymer Concrete: A Systematic Review. Discover Materials, 3(14).
  • [12] Raheem, A., Oyebisi, S. O., Akintayo, S. O., Oyeniran, M. O. 2010. Effects of Admixture on the Properties of Corncob Ash Cement Concrete. Leonardo Electronic Journal of Practices and Technologies, 16, 13-20.
  • [13] Kamau, J., Ahmed, A., Hirst, P., Kangwa, J. 2016. Suitability of Corncob Ash as a Supplementary Cementitious Material. International Journal of Material Science and Engineering, 4(4), 215-228.
  • [14] Adesanya, D. A., Raheem, A. A. 2009. A Study of the Workability and Compressive Strength Characteristics of Corn Cob Ash Blended Portland Cement Concrete. Construction and Building Materials, 23(1), 311-317.
  • [15] Shakouri, M., Exstrom, C. L., Ramanathan, S., Suraneni, P. 2020. Hydration, Strength, and Durability of Cementitious Materials Incorporating Untreated Corn Cob Ash. Construction and Building Materials, 243, 118171.
  • [16] Raheem, A. A., Adesanya. D. A. 2011. A Study of Thermal Conductivity of Corn Cob Ash Blended Cement Mortar. The Pacific Journal of Science and Technology, 12(2), 106-111.
  • [17] Oyebisi, S., Ede, A., Ofuyatan, O., Oluwafemi, J., Akinwumi, I. 2018. Comparative Study of Corncob Ash-Based Lateritic Interlocking and Sandcrete Hollow Blocks. International Journal of GEOMATE, 15(51), 209-216.
  • [18] Oyebisi, S., Ede, A., Olutoge, F., Ofuyatan, O., Alayande, T. 2019. Building a Sustainable World: Economy Index of Geopolymer Concrete. 10th International Structural Engineering and Construction Conference (ISEC-10), 20-25 Mayıs, Chicago, 1-6.
  • [19] Oyebisi, S., Ede, A., Ofuyatan, O., Alayande, T., Mark, G., Jolayemi, J., Ayegbo, S. 2018. Effects of 12 Molar Concentration of Sodium Hydroxide on the Compressive Strength of Geopolymer Concrete. IOP Conference Series: Materials Science and Engineering, 413, 012066. 50
  • [20] Oyebisi, S., Ede, A., Olutoge, F., Igba, T., Ramonu, J. 2019. Rheology of Slag-Based Geopolymer Concrete Using Corncob Ash as A Pozzolanic Material. IOP Conference Series: Materials Science and Engineering, 640(1), 012057.
  • [21] Oyebisi, S., Ede, A., Olutoge, F., Omole, D. 2020a. Geopolymer Concrete Incorporating Agro industrial Wastes: Effects on Mechanical Properties, Microstructural Behaviour and Mineralogical Phases. Construction and Building Materials, 256, 119390.
  • [22] Oyebisi, S., Ede, A., Olutoge, F., Ogbiye, S. 2020b. Evaluation of Reactivity Indexes and Durability Properties of Slag-Based Geopolymer Concrete Incorporating Corn Cob Ash. Construction and Building Materials, 258, 119604.
  • [23] Oyebisi, S., Owamah, H., Ede, A. 2021. Flexural Optimization of Slag-based Geopolymer Concrete Beams Modified with Corn Cob Ash. Scientia Iranica, 28(5), 2582-2595.
  • [24] Oyebisi, S., Ede, A., Olutoge, F., Owamah, H., Igba, T. 2022. Slag-based Geopolymer Concrete Incorporating Ash: Effects on Thermal Performance. Australian Journal of Civil Engineering, 20(1), 208-221.
  • [25] Murthi, P., Poongodi, K., Saravanan, R., Rajesh Chary, K., Gobinath, R. 2020. Effect of the Ratio Between Na2SiO3 and NaOH Solutions and Curing Temperature on the Early Age Properties of Geopolymer Mortar. IOP Conference Series: Materials Science and Engineering, 981(3), 032060.
  • [26] Saloni, Parveen, Pham, T. M., Lim, Y. Y., Pradhan, S. S., Jatin, Kumar, J. 2021. Performance of Rice Husk Ash-Based Sustainable Geopolymer Concrete with Ultra-Fine Slag and Corn Cob Ash. Construction and Building Materials, 279, 122526.
  • [27] Arif, R., Iqtidar, A., Khattak, S. U. 2023. Utilizing Corn Cob Ash and Bauxite as One-Part Geopolymer: A Sustainable Approach for Construction Materials. Engineering Proceedings, 44(1), 18.
  • [28] TS EN 196-6, 2020. Çimento Deney Yöntemleri Bölüm 6: İncelik Tayini. Türk Standartları Enstitüsü, Ankara.
  • [29] TS EN 196-1, 2016. Çimento Deney Metotları Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara.
  • [30] TS 25, 2008. Doğal Puzolan (Tras)-Çimento ve Betonda Kullanılan-Tarifler, Gerekler ve Uygunluk Kriterleri. Türk Standartları Enstitüsü, Ankara.
  • [31] BS 8615, 2019. Specification for Pozzolanic Materials for Use with Portland Cement High Reactivity Natural Calcined Pozzolana. British Standards Institute, London.
  • [32] ASTM C618, 2022. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Washington, D.C.
  • [33] Nath, P., Sarker, P. K. 2014. Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition. Construction and Building Materials, 66, 163-171.
  • [34] Oyebisi, S., Ede, A., Olutoge, F., Ofuyatan, O., Oluwafemi, J. 2018. Influence of Alkali Concentrations on the Mechanical Properties of Geopolymer Concrete. International Journal of Civil Engineering and Technology, 9(8), 734-743.
  • [35] Abdul-Manan, D. 2016. Exploring the Potential of Alternative Pozzolana Cement for the Northern Savannah Ecological Zone in Ghana. American Journal of Civil Engineering, 4(30), 74-79.
  • [36] Olofintuyi, I., Oluborode, K. 2015. Strength Evaluation of Corn Cob Ash in a Blended Portland Cement. International Journal of Web Engineering and Technology, 9001(12), 2277 3754.
  • [37] Price, A. A., Yeargin, R., Fini, E. H., Abu-Lebdeh, T. 2014. Investigating Effects of the Introduction of Corncob Ash into Portland Cements Concrete: Mechanical and Thermal Properties. American Journal of Engineering and Applied Sciences, 7, 137-148.
  • [38] TS EN 12350-5, 2019. Taze Beton Deneyleri Bölüm 5: Yayılma Tablası Deneyi. Türk Standartları Enstitüsü, Ankara.
  • [39] TS EN 196-3, 2017. Çimento Deney Yöntemleri Bölüm 3: Priz Süreleri ve Genleşme Tayini. Türk Standartları Enstitüsü, Ankara.
  • [40] TS EN 1015-10, 2001. Kagir Harcı-Deney Metotları – Bölüm 10: Sertleşmiş Harcın Boşluklu Kuru Birim Hacim Kütlesinin Tayini. Türk Standartları Enstitüsü, Ankara.
  • [41] TS EN 13755, 2014. Doğal Taşlar-Deney Yöntemleri – Atmosfer Basıncında Su Emme Tayini. Türk Standartları Enstitüsü, Ankara.
  • [42] TS 699, 2009. Doğal Yapı Taşları- İnceleme ve Laboratuvar Deney Yöntemleri. Standartları Enstitüsü, Ankara. Türk
  • [43] TS EN 14579, 2015. Doğal Taşlar-Deney Yöntemleri – Ses Hızı İlerlemesinin Tayini. Türk Standartları Enstitüsü, Ankara.
  • [44] ASTM C518-17, 2021. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Appatatus. ASTM International, Washington, D.C. 51
  • [45] Afriansya, R., Astuti, P., Ratnadewati, V. S., Randisyah, J., Ramadhona, T. Y., Anisa, E. A. 2021. Investigation of Setting Time and Flowability of Geopolymer Mortar Using Local Industry and Agriculture Waste as Precursor in Indonesia. International Journal of GEOMATE, 21(87), 64 69.
  • [46] Saleh, F., Prayuda, H., Monika, F., Pratama, M. M. A. 2019. Characteristics Comparison on Mechanical Properties of Mortars using Agriculture Waste as a Cement Replacement Materials. IOP Conference Series: Materials Science and Engineering, 650(1), 012039.
  • [47] Ghosh, K., Ghosh, P. 2012. Effect of Na2O/Al2O3, SiO2/Al2O3 and W/B Ratio on Setting Time and Workability of Fly Ash Based Geopolymer. International Journal of Engineering Research and Applications, 2(4), 2142-2147.
  • [48] Wijaya, S. W., Hardjito, D. 2016. Factors Affecting the Setting Time of Fly Ash-Based Geopolymer. Materials Science Forum, 841, 90-97.
  • [49] Chen, X., Sutrisno, A., Struble, L. J. 2018. Effects of Calcium on Setting Mechanism of Metakaolin Based Geopolymer. Journal of the American Ceramic Society, 101(2), 957-968.
  • [50] Senff, L., Barbetta, P. A., Repette, W. L., Hotza, D., Paiva, H., Ferreira, V. M., Labrincha, J. A. 2009. Mortar Composition Defined According to Rheometer and Flow Table Tests Using Factorial Designed Experiments. Construction and Building Materials, 23(10), 3107-3111.
  • [51] Al-Majidi, M. H., Lampropoulos, A., Cundy, A., Meikle, S. 2016. Development of Geopolymer Mortar under Ambient Temperature for In Situ Applications. Construction Materials, 120, 198-211. and Building
  • [52] Huseien, G. F., Ismail, M., Khalid, N. H. A., Hussin, M. W., Mirza, J. 2018. Compressive Strength and Microstructure of Assorted Wastes Incorporated Geopolymer Mortars: Effect of Solution Molarity. Alexandria Engineering Journal, 57(4), 3375 3386.
  • [53] Garcia-Lodeiro, I., Palomo, A., Ferná ndez Jimé nez, A. 2015. An Overview of the Chemistry of Alkali-Activated Cement-Based Binders. ss 19 47. Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., Chindaprasirt, P., ed. 2015. Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 26.
  • [54] Luhar, S., Chaudhary, S., Luhar, I. 2019. Development of Rubberized Geopolymer Concrete: Strength and Durability Studies. Construction and Building Materials, 204, 740 753.
  • [55] Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V. M. C. F., Varum, H. 2012. Corn Cob Lightweight Concrete for Non Structural Applications. Construction and Building Materials, 34, 346-351.
  • [56] Prud'homme, E., Joussein, E., Rossignol, S. 2015. Alkali-Activated Concrete Binders as Inorganic Thermal Insulator Materials. ss 687-728. Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., Chindaprasirt, P., ed. 2015. Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 26.
  • [57] Schulle, W., Schlegel, E. 1991. Fundamentals and Properties of Refractory Thermal Insulating Materials. Interceramics, 40(7), 1-12.
  • [58] Wei, S., Yiqiang, C., Yunsheng, Z., Jones, M. R. 2013. Characterization and Simulation of Microstructure and Thermal Properties of Foamed Concrete. Construction and Building Materials, 47, 1278-1291.
  • [59] Incropera, F. P., DeWitt, D. P. 2002. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York.
  • [60] TS 825, 2013. Binalarda Isı Yalıtım Kuralları. Türk Standartları Enstitüsü, Ankara.
  • [61] Ersen, A., Gürdal, E., Güleç, A. 2011. Geleneksel Harçlar ve Koruma Harçları, Bağ layıcı Olarak Kullanılacak Kireç ve Hidrolik Kireçli, Puzzolanlı, Tuğ la Tozlu ve Tuğ la Kırıklı Harçlardaki Malzeme Oranlarının Belirlenmesi Çalışması Raporu. http://dergipark.org.tr/tr/download/issue file/23374. (Erişim Tarihi: 21.01.2023).
  • [62] ASTM C150, 2012. Standard Specification for Portland Cement. Washington, D.C.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Kübra Ekiz Barış 0000-0002-3830-7185

Yayımlanma Tarihi 27 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 1

Kaynak Göster

APA Ekiz Barış, K. (2024). Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 42-52. https://doi.org/10.19113/sdufenbed.1360161
AMA Ekiz Barış K. Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı. SDÜ Fen Bil Enst Der. Nisan 2024;28(1):42-52. doi:10.19113/sdufenbed.1360161
Chicago Ekiz Barış, Kübra. “Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 1 (Nisan 2024): 42-52. https://doi.org/10.19113/sdufenbed.1360161.
EndNote Ekiz Barış K (01 Nisan 2024) Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 42–52.
IEEE K. Ekiz Barış, “Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı”, SDÜ Fen Bil Enst Der, c. 28, sy. 1, ss. 42–52, 2024, doi: 10.19113/sdufenbed.1360161.
ISNAD Ekiz Barış, Kübra. “Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (Nisan 2024), 42-52. https://doi.org/10.19113/sdufenbed.1360161.
JAMA Ekiz Barış K. Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı. SDÜ Fen Bil Enst Der. 2024;28:42–52.
MLA Ekiz Barış, Kübra. “Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 1, 2024, ss. 42-52, doi:10.19113/sdufenbed.1360161.
Vancouver Ekiz Barış K. Atık Mısır Koçanı Külünün Jeopolimer Harç Üretiminde Kullanımı. SDÜ Fen Bil Enst Der. 2024;28(1):42-5.

e-ISSN: 1308-6529