Araştırma Makalesi
BibTex RIS Kaynak Göster

YbPdH3'ün Elastik, Elektronik, Dinamik ve Termodinamik Özellikleri

Yıl 2024, Cilt: 28 Sayı: 1, 53 - 59, 27.04.2024
https://doi.org/10.19113/sdufenbed.1398840

Öz

YbPdH3 için ilk kez ilk prensip hesaplamaları yoluyla kapsamlı bir hesaplamalı
araştırma yapıldı. Yapısal, elektronik ve termodinamik özellikler elde edildi.
YbPdH3'ün elde edilen örgü sabiti mevcut literatürle iyi bir uyum içindedir. Daha
sonra elastik sabitler elde edildi ve anizotropi, sertlik, Cauchy basıncı, kayma ve
Young modülü, işlenebilirlik indeksi ve Poisson oranı gibi çeşitli parametreleri
hesaplamak için kullanıldı. Born stabilite kriterlerine göre YbPdH3 mekanik olarak
stabil bir malzemedir. Cauchy basıncı ve Poisson oranı sünek yapıyı gösterir.
Anizotropi faktörü Young modülü, kayma modülü, doğrusal sıkıştırılabilirlik ve
Poisson oranı için neredeyse her yönde anizotropik doğayı göstermiştir.
İşlenebilirlik indeksi (B/C44) 2.88 olarak bulunurken YbPdH3'ün Vickers sertliği
Chen modeliyle 2.965 olarak hesaplandı. YbPdH3'ün elektronik bant yapısı, değerlik
ve iletim bandı arasında bant aralığı olmadığından metalik özellikler
göstermektedir. YbPdH3'ün Debye sıcaklığı, Debye titreşim enerjisi, titreşim serbest
enerjisi, entropi, ısı kapasitesi ve erime sıcaklığı gibi termodinamik özellikleri de
elde edilmiştir. Isı kapasitesi yaklaşık 300 K'da Dulong-Petit sınırına ulaşmış gibi
görülmüştür.

Kaynakça

  • [1] Orgaz E. , Mazel V., Gupta M. 1996. Electronic structure and electron-phonon coupling in stoichiometric and defective hydrides MPdH3 (M= Ca, Sr, Eu, Yb). Journal of Physical Review B., 54(22), 16124.
  • [2] Orgaz E., Mazel V., Gupta M. 1997. Internal pressure effect in the series of perovskite structure hydrides: APdH3 (A=Sr,Eu,Yb). Journal of Alloys Compounds, 253-254, 330-332.
  • [3] Al S., Kurkcu C., Yamcicier C. 2020. Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. International Journal of Hydrogen Energy, 45(55), 30783-91.
  • [4] Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
  • [5] Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M. B., Calandra M., et al. 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), 465901.
  • [6] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. 1996. Journal Physical review letters, 77(18), 3865.
  • [7] Methfessel M., Paxton A. 1989. High-precision sampling for Brillouin-zone integration in metals. Journal of Physical Review B, 40(6), 3616.
  • [8] Yıldız G. D., Yıldız Y. G., AL S., İyigör A., Arıkan N. 2018. Computational investigations of mechanic, electronic and lattice dynamic properties of yttrium based compounds. International Jornal of Modern Physics B, 32(20), 1850214.
  • [9] Al S., Arikan N., Demir S., Iyigör A. 2018. Lattice dynamic properties of Rh2 XAl (X= Fe and Y) alloys. Physica B: Condensed Matter, 531, 16-20.
  • [10] Al S., Iyigor A. 2020. Structural, electronic, elastic and thermodynamic properties of hydrogen storage magnesium-based ternary hydrides. Chemical Physics Letters, 743, 137184.
  • [11] Chen S., Sun Y., Duan Y-H., Huang B., Peng M-J. 2015. Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. Journal of Alloys and Compdounds, 630, 202-208.
  • [12] D. G. 1992. Theoretical predictions of structure and related properties of intermetallics. Materials Science and Technology, 8(4), 345-349. [13] Kurkcu C., Al S., Yamcicier C. 2020. Ab-initio study of structural, electronic, elastic, phonon properties, and phase transition path of sodium selenite. Chemical Physics, 539, 110934.
  • [14] Al S. 2021. Elastic and thermodynamic properties of cubic perovskite type NdXO3 (X=Ga, In). The European Physical Journal B, 94(5), 108.
  • [15] Arar R., Ouahrani T., Varshney D., Khenata R., Murtaza G., Rached D., et al. 2015. Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X=Mg, Zn) from first-principle calculations. Materials Science Semiconducting Process, 33, 127-135.
  • [16] Bronger W., Ridder G. 1994. Synthese und Struktur von SrPdH2,7. Journal of Alloys Compounds, 210(1-2), 53-55.
  • [17] Ali M. A., Hossain M. M., Islam A. Naqib S. H. 2021. Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase. Journal of Alloys Compounds, 857, 158264.
  • [18] Chen H., Yang L., Long J. 2015. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al–Cu intermetallic compounds. Superlattices Microstructure, 79, 156-165.
  • [19] Hossain M. M., Ali M. A., Uddin M. M., Islam A., Naqib S.H. 2021. Origin of high hardness and optoelectronic and thermo-physical properties of boron-rich compounds B6X (X = S, Se): A comprehensive study via DFT approach. Journal of Applied Physics, 129(17), 175109.
  • [20] Mubarak A. A., Al-Omari S. 2015. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3. Journal of Magnetism and Magnetic Materials, 382, 211 218.
  • [21] Awais M., Zeba I., Gillani S. S. A., Shakil M., Rizwan M. 2022. First-principles calculations to investigate band gap of cubic BaThO3 with systematic isotropic external static pressure and its impact on structural, elastic, mechanical, anisotropic, electronic and optical properties. Journal of Physical Chemistry Solids, 169, 110878.
  • [22] Al S. 2021. Mechanical and electronic properties of perovskite hydrides LiCaH3 and NaCaH3 for hydrogen storage applications. The European Physical Journal B, 94(9), 182.
  • [23] Musari A. A. 2021. Electronic, mechanical, vibrational and thermodynamic properties of FeXSb (X = Hf and Nb) Half-Heusler alloys from first-principles approach. Solid State Sciences, 122, 106755.

Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3

Yıl 2024, Cilt: 28 Sayı: 1, 53 - 59, 27.04.2024
https://doi.org/10.19113/sdufenbed.1398840

Öz

A comprehensive computational investigation has been carried out for
YbPdH3 via first principles calculations for the first time. Structural, electronic and
thermodynamic properties are obtained. The obtained lattice constant of YbPdH3 is
in a good agreement with the existing literature. Subsequently, the elastic constants
are obtained and used to compute several parameters such as anisotropy, hardness,
Cauchy pressure, shear and Young modulus, machinability index and Poisson’s ratio.
According to Born stability criteria, YbPdH3 is mechanically stable material. Cauchy
pressure and Poisson’s ratio indicates ductile nature. The anisotropy factor
indicates anisotropic nature almost in every direction for Young modulus, shear
modulus, linear compressibility and Poisson’s ratio. The machinability index (B/C44)
is found to be 2.88 whereas Vickers hardness of YbPdH3 is computed via Chen’s
model as 2.965. The electronic band structure of YbPdH3 demonstrates metallic
characteristics since there is no band gap between valence and conduction band.
The thermodynamic properties such as Debye temperature, Debye vibrational
energy, vibrational free energy, entropy, heat capacity and melting temperature of
YbPdH3 are also obtained. The heat capacity seems to reach its Dulong-Petit limit at
about 300 K.

Kaynakça

  • [1] Orgaz E. , Mazel V., Gupta M. 1996. Electronic structure and electron-phonon coupling in stoichiometric and defective hydrides MPdH3 (M= Ca, Sr, Eu, Yb). Journal of Physical Review B., 54(22), 16124.
  • [2] Orgaz E., Mazel V., Gupta M. 1997. Internal pressure effect in the series of perovskite structure hydrides: APdH3 (A=Sr,Eu,Yb). Journal of Alloys Compounds, 253-254, 330-332.
  • [3] Al S., Kurkcu C., Yamcicier C. 2020. Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. International Journal of Hydrogen Energy, 45(55), 30783-91.
  • [4] Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
  • [5] Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M. B., Calandra M., et al. 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), 465901.
  • [6] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. 1996. Journal Physical review letters, 77(18), 3865.
  • [7] Methfessel M., Paxton A. 1989. High-precision sampling for Brillouin-zone integration in metals. Journal of Physical Review B, 40(6), 3616.
  • [8] Yıldız G. D., Yıldız Y. G., AL S., İyigör A., Arıkan N. 2018. Computational investigations of mechanic, electronic and lattice dynamic properties of yttrium based compounds. International Jornal of Modern Physics B, 32(20), 1850214.
  • [9] Al S., Arikan N., Demir S., Iyigör A. 2018. Lattice dynamic properties of Rh2 XAl (X= Fe and Y) alloys. Physica B: Condensed Matter, 531, 16-20.
  • [10] Al S., Iyigor A. 2020. Structural, electronic, elastic and thermodynamic properties of hydrogen storage magnesium-based ternary hydrides. Chemical Physics Letters, 743, 137184.
  • [11] Chen S., Sun Y., Duan Y-H., Huang B., Peng M-J. 2015. Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. Journal of Alloys and Compdounds, 630, 202-208.
  • [12] D. G. 1992. Theoretical predictions of structure and related properties of intermetallics. Materials Science and Technology, 8(4), 345-349. [13] Kurkcu C., Al S., Yamcicier C. 2020. Ab-initio study of structural, electronic, elastic, phonon properties, and phase transition path of sodium selenite. Chemical Physics, 539, 110934.
  • [14] Al S. 2021. Elastic and thermodynamic properties of cubic perovskite type NdXO3 (X=Ga, In). The European Physical Journal B, 94(5), 108.
  • [15] Arar R., Ouahrani T., Varshney D., Khenata R., Murtaza G., Rached D., et al. 2015. Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X=Mg, Zn) from first-principle calculations. Materials Science Semiconducting Process, 33, 127-135.
  • [16] Bronger W., Ridder G. 1994. Synthese und Struktur von SrPdH2,7. Journal of Alloys Compounds, 210(1-2), 53-55.
  • [17] Ali M. A., Hossain M. M., Islam A. Naqib S. H. 2021. Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase. Journal of Alloys Compounds, 857, 158264.
  • [18] Chen H., Yang L., Long J. 2015. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al–Cu intermetallic compounds. Superlattices Microstructure, 79, 156-165.
  • [19] Hossain M. M., Ali M. A., Uddin M. M., Islam A., Naqib S.H. 2021. Origin of high hardness and optoelectronic and thermo-physical properties of boron-rich compounds B6X (X = S, Se): A comprehensive study via DFT approach. Journal of Applied Physics, 129(17), 175109.
  • [20] Mubarak A. A., Al-Omari S. 2015. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3. Journal of Magnetism and Magnetic Materials, 382, 211 218.
  • [21] Awais M., Zeba I., Gillani S. S. A., Shakil M., Rizwan M. 2022. First-principles calculations to investigate band gap of cubic BaThO3 with systematic isotropic external static pressure and its impact on structural, elastic, mechanical, anisotropic, electronic and optical properties. Journal of Physical Chemistry Solids, 169, 110878.
  • [22] Al S. 2021. Mechanical and electronic properties of perovskite hydrides LiCaH3 and NaCaH3 for hydrogen storage applications. The European Physical Journal B, 94(9), 182.
  • [23] Musari A. A. 2021. Electronic, mechanical, vibrational and thermodynamic properties of FeXSb (X = Hf and Nb) Half-Heusler alloys from first-principles approach. Solid State Sciences, 122, 106755.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Karmaşık Fiziksel Sistemler
Bölüm Makaleler
Yazarlar

Selgin Al 0000-0003-2496-1300

Yayımlanma Tarihi 27 Nisan 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 16 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 1

Kaynak Göster

APA Al, S. (2024). Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 53-59. https://doi.org/10.19113/sdufenbed.1398840
AMA Al S. Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3. SDÜ Fen Bil Enst Der. Nisan 2024;28(1):53-59. doi:10.19113/sdufenbed.1398840
Chicago Al, Selgin. “Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 1 (Nisan 2024): 53-59. https://doi.org/10.19113/sdufenbed.1398840.
EndNote Al S (01 Nisan 2024) Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 53–59.
IEEE S. Al, “Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3”, SDÜ Fen Bil Enst Der, c. 28, sy. 1, ss. 53–59, 2024, doi: 10.19113/sdufenbed.1398840.
ISNAD Al, Selgin. “Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (Nisan 2024), 53-59. https://doi.org/10.19113/sdufenbed.1398840.
JAMA Al S. Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3. SDÜ Fen Bil Enst Der. 2024;28:53–59.
MLA Al, Selgin. “Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 1, 2024, ss. 53-59, doi:10.19113/sdufenbed.1398840.
Vancouver Al S. Elastic, Electronic, Dynamic and Thermodynamic Properties of YbPdH3. SDÜ Fen Bil Enst Der. 2024;28(1):53-9.

e-ISSN: 1308-6529