Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 1, 153 - 163, 31.01.2024
https://doi.org/10.18186/thermal.1429746

Öz

Kaynakça

  • REFERENCES
  • [1] Heywood JB. Internal combustion engines fundamentals. New York: McGraw Hill; 1988.
  • [2] Sharma VK, Mohan M, Mouli C. Effect of intake swirl on the performance of single cylinder direct injection diesel engine. IOP Conf Ser Mater Sci Eng 2017;263:062077. [CrossRef]
  • [3] Priyadarsini I. Flow analysis of intake manifold using computational fluid dynamics. Int J Eng Adv Res Technol 2016;2:15.
  • [4] Chaubey A, Tiwari AC. Design and CFD analysis of the intake manifold for the Suzuki G13bb engine. Int J Res Appl Sci Eng Technol 2017;5:12581276.
  • [5] Battista D, Bartolomeo M, Cipollone R. Flow and thermal management of engine intake air for fuel and emissions saving. Energy Convers Manag 2018;173:4655. [CrossRef]
  • [6] Silva E, Ochoa A, Henríquez J. Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Convers Manag 2019;188:310320. [CrossRef]
  • [7] Giannakopoulos GK, Frouzakis CE, Boulouchos K, Fischer PF, Tomboulides AG. Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. Int J Heat Fluid Flow 2017;68:257268. [CrossRef]
  • [8] Benajes J, Reyes E, Galindo J, Peidro J. Predesign Model for Intake Manifolds in Internal Combustion Engines. Society of Automotive Engineers, Inc., Paper SAE 1997:970055. [CrossRef]
  • [9] Chalet D, Mahe A, Migaud J, Hetet JF. A frequency modeling of the pressure waves in the inlet manifold of internal combustion engine. Appl Energy 2011;88:2988–2994. [CrossRef]
  • [10] Chalet D, Chesse P. Analysis of unsteady flow through a throttle valve using CFD. Eng Appl Comput Fluid Mech 2010;4:387395. [CrossRef]
  • [11] Costa RC, Hanriot SM, Sodré JR. Influence of intake pipe length and diameter on the performance of a spark ignition engine. J Braz Soc Mech Sci Eng 2014;36:2935. [CrossRef]
  • [12] Sadeq AM, Bassiony MA, Elbashir AM, Ahmed SF, Khraisheh M. Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel 2019;255:115769. [CrossRef]
  • [13] Sadeq AM, Bassiony MA, Elbashir AM, Ahmed SF, Khraisheh M. Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel 2019;255:115769. [CrossRef]
  • [14] Hennings S, Moura LM, Mariani VC, Coelho S, Velásquez JA. Volumetric efficiency optimization of a single-cylinder D.I. diesel engine using differential evolution algorithm. Appl Therm Eng 2016;108:660–669. [CrossRef]
  • [15] Vaz J, Machado A, Martinuzzi R, Martins M. Design and Manufacture of a Formula SAE Variable Intake Manifold. SAE Technical Paper 2017;36:0181. [CrossRef]
  • [16] Gocmen K, Soyhan HS. An intake manifold geometry for enhancement of pressure drop in a diesel engine. Fuel 2020;261:116193. [CrossRef]
  • [17] Harrison MF, Soto I, Unzueta P. A linear acoustic model for multicylinder IC engine intake manifolds including the effects of the intake throttle. J Sound Vib 2004;278:975–1011. [CrossRef]
  • [18] Hadjkacem S, Jemni MA, Abid MS. Volumetric efficiency optimization of manifold with variable geometry using acoustic vibration for ıntake manifold with variable geometry in case of lpg- enriched hydrogen engine. Arab J Sci Eng 2019;44:731–738. [CrossRef]
  • [19] Hiereth H, Prenninger P. Charging the Internal Combustion Engine. New York, Wien: Springer; 2007.
  • [20] Borel M. Les phénomènes d’ondes dans les moteurs. Publications de l’Institut Français du Pétrole, éditions Technip: France; 2000.
  • [21] Desmond EW, Richard JP. Theory of Engine Manifold Design: Wave Action Methods for IC ENGİNES. London: Professional Engineering Pub; 2000.
  • [22] Jemni MA, Kantchev G, Abid MS. Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fueled, using CFD analyses and experimental investigations. Energy 2011;36:27012715. [CrossRef]
  • [23] Samuel J, Annamalai K. Effect of variable length intake manifold on a turbocharged multi-cylinder diesel engine. SAE Technical Paper 2013:01-2756. [CrossRef]
  • [24] Bortoluzzi D, Cossalter V, Doria A. The effect of tunable resonators on the volumetric efficiency of an engine. SAE Technical Paper 1998:983045. [CrossRef]
  • [25] Margary R, Nino E, Vafidis C. The effect of ıntake duct length on the ın-cylinder air motion in a motored diesel engine. SAE Technical Paper 1990:900057. [CrossRef]
  • [26] Maftouni N, Ebrahimi R. The effect of intake manifold runners’ length on the volumetric efficiency by 3-D CFD model. SAE Technical Paper 2006:2006-32-0118. [CrossRef]
  • [27] Fontana G, Bozza F, Galloni E, Siano D. Experimental and numerical analyses for the characterization of the cyclic dispersion and knock occurrence in a small-size SI engine. SAE Technical Paper 2010:2010-32-0069. [CrossRef]
  • [28] Saaidia R, Jemni MA, Abid MS. Simulation and empirical studies of the commercial SI engine performance and ıts emission levels when running on a CNG and hydrogen blend. Energies 2018;11:29. [CrossRef]
  • [29] Aezeden M, Kuri P, Rout S, Muduli K. Assessment of ec-toxicity potential of fuel by exhaust gas analysis. J Therm Eng 2023;9:669678. [CrossRef]
  • [30] Attia ME. CFD Simulation of the Co Emissions of Pollutants Contained in Flames H2-C3H8/Air. 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation

Effects of intake manifold geometry in H2 & CNG fueled engine combustion

Yıl 2024, Cilt: 10 Sayı: 1, 153 - 163, 31.01.2024
https://doi.org/10.18186/thermal.1429746

Öz

This study attempted to identify the effect of optimized intake manifold geometry on the behaviors and emission level of hydrogen compressed natural gas (H2CNG) fueled engine. For this purpose, a commercial Hyundai Sonata spark ignition engine (SIE) is modified to operate with CNG and hydrogen blend. The optimal intake pipe length was predicted using an analytical acoustic method. A new intake manifold is designed and implemented utilizing natural supercharging managed by over-pressure waves acoustic propagation. Several tests are conducted on the engine using the new manifold with a speed range from 1000 to 5000 rpm. Based on various engine speeds, the variation of brake torque (BT), in-cylinder pressure, NOx and CO emissions investigated by using gasoline, CNG and hydrogen CNG blend (HCNG) fueled engines via external mixtures. The first finding of the study is that the novel geometry improves the in-cylinder pressure by 10% at 3500 rpm. However, high engine speeds show a reduction of 14% in NOx and 40% in HC while speeds below 2000 rpm reduce CO by 40%. The second finding is that the new optimized geometry serves to get rid of both the auto-igni-tion and the backfire for high ratio of hydrogen in the blend.

Kaynakça

  • REFERENCES
  • [1] Heywood JB. Internal combustion engines fundamentals. New York: McGraw Hill; 1988.
  • [2] Sharma VK, Mohan M, Mouli C. Effect of intake swirl on the performance of single cylinder direct injection diesel engine. IOP Conf Ser Mater Sci Eng 2017;263:062077. [CrossRef]
  • [3] Priyadarsini I. Flow analysis of intake manifold using computational fluid dynamics. Int J Eng Adv Res Technol 2016;2:15.
  • [4] Chaubey A, Tiwari AC. Design and CFD analysis of the intake manifold for the Suzuki G13bb engine. Int J Res Appl Sci Eng Technol 2017;5:12581276.
  • [5] Battista D, Bartolomeo M, Cipollone R. Flow and thermal management of engine intake air for fuel and emissions saving. Energy Convers Manag 2018;173:4655. [CrossRef]
  • [6] Silva E, Ochoa A, Henríquez J. Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Convers Manag 2019;188:310320. [CrossRef]
  • [7] Giannakopoulos GK, Frouzakis CE, Boulouchos K, Fischer PF, Tomboulides AG. Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. Int J Heat Fluid Flow 2017;68:257268. [CrossRef]
  • [8] Benajes J, Reyes E, Galindo J, Peidro J. Predesign Model for Intake Manifolds in Internal Combustion Engines. Society of Automotive Engineers, Inc., Paper SAE 1997:970055. [CrossRef]
  • [9] Chalet D, Mahe A, Migaud J, Hetet JF. A frequency modeling of the pressure waves in the inlet manifold of internal combustion engine. Appl Energy 2011;88:2988–2994. [CrossRef]
  • [10] Chalet D, Chesse P. Analysis of unsteady flow through a throttle valve using CFD. Eng Appl Comput Fluid Mech 2010;4:387395. [CrossRef]
  • [11] Costa RC, Hanriot SM, Sodré JR. Influence of intake pipe length and diameter on the performance of a spark ignition engine. J Braz Soc Mech Sci Eng 2014;36:2935. [CrossRef]
  • [12] Sadeq AM, Bassiony MA, Elbashir AM, Ahmed SF, Khraisheh M. Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel 2019;255:115769. [CrossRef]
  • [13] Sadeq AM, Bassiony MA, Elbashir AM, Ahmed SF, Khraisheh M. Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel 2019;255:115769. [CrossRef]
  • [14] Hennings S, Moura LM, Mariani VC, Coelho S, Velásquez JA. Volumetric efficiency optimization of a single-cylinder D.I. diesel engine using differential evolution algorithm. Appl Therm Eng 2016;108:660–669. [CrossRef]
  • [15] Vaz J, Machado A, Martinuzzi R, Martins M. Design and Manufacture of a Formula SAE Variable Intake Manifold. SAE Technical Paper 2017;36:0181. [CrossRef]
  • [16] Gocmen K, Soyhan HS. An intake manifold geometry for enhancement of pressure drop in a diesel engine. Fuel 2020;261:116193. [CrossRef]
  • [17] Harrison MF, Soto I, Unzueta P. A linear acoustic model for multicylinder IC engine intake manifolds including the effects of the intake throttle. J Sound Vib 2004;278:975–1011. [CrossRef]
  • [18] Hadjkacem S, Jemni MA, Abid MS. Volumetric efficiency optimization of manifold with variable geometry using acoustic vibration for ıntake manifold with variable geometry in case of lpg- enriched hydrogen engine. Arab J Sci Eng 2019;44:731–738. [CrossRef]
  • [19] Hiereth H, Prenninger P. Charging the Internal Combustion Engine. New York, Wien: Springer; 2007.
  • [20] Borel M. Les phénomènes d’ondes dans les moteurs. Publications de l’Institut Français du Pétrole, éditions Technip: France; 2000.
  • [21] Desmond EW, Richard JP. Theory of Engine Manifold Design: Wave Action Methods for IC ENGİNES. London: Professional Engineering Pub; 2000.
  • [22] Jemni MA, Kantchev G, Abid MS. Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fueled, using CFD analyses and experimental investigations. Energy 2011;36:27012715. [CrossRef]
  • [23] Samuel J, Annamalai K. Effect of variable length intake manifold on a turbocharged multi-cylinder diesel engine. SAE Technical Paper 2013:01-2756. [CrossRef]
  • [24] Bortoluzzi D, Cossalter V, Doria A. The effect of tunable resonators on the volumetric efficiency of an engine. SAE Technical Paper 1998:983045. [CrossRef]
  • [25] Margary R, Nino E, Vafidis C. The effect of ıntake duct length on the ın-cylinder air motion in a motored diesel engine. SAE Technical Paper 1990:900057. [CrossRef]
  • [26] Maftouni N, Ebrahimi R. The effect of intake manifold runners’ length on the volumetric efficiency by 3-D CFD model. SAE Technical Paper 2006:2006-32-0118. [CrossRef]
  • [27] Fontana G, Bozza F, Galloni E, Siano D. Experimental and numerical analyses for the characterization of the cyclic dispersion and knock occurrence in a small-size SI engine. SAE Technical Paper 2010:2010-32-0069. [CrossRef]
  • [28] Saaidia R, Jemni MA, Abid MS. Simulation and empirical studies of the commercial SI engine performance and ıts emission levels when running on a CNG and hydrogen blend. Energies 2018;11:29. [CrossRef]
  • [29] Aezeden M, Kuri P, Rout S, Muduli K. Assessment of ec-toxicity potential of fuel by exhaust gas analysis. J Therm Eng 2023;9:669678. [CrossRef]
  • [30] Attia ME. CFD Simulation of the Co Emissions of Pollutants Contained in Flames H2-C3H8/Air. 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Makaleler
Yazarlar

Rafaa Saaıdıa Bu kişi benim 0000-0002-3892-9726

Ons Ghrıss Bu kişi benim 0000-0002-8860-6415

Hasan Köten 0000-0002-1907-9420

Mohammed M Alquraısh Bu kişi benim 0009-0000-4513-6006

Abdallah Bouabıdı Bu kişi benim 0000-0002-9838-9346

Mamdouh El Haj Assad Bu kişi benim 0000-0001-5819-6331

Yayımlanma Tarihi 31 Ocak 2024
Gönderilme Tarihi 13 Nisan 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Saaıdıa, R., Ghrıss, O., Köten, H., M Alquraısh, M., vd. (2024). Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering, 10(1), 153-163. https://doi.org/10.18186/thermal.1429746
AMA Saaıdıa R, Ghrıss O, Köten H, M Alquraısh M, Bouabıdı A, El Haj Assad M. Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering. Ocak 2024;10(1):153-163. doi:10.18186/thermal.1429746
Chicago Saaıdıa, Rafaa, Ons Ghrıss, Hasan Köten, Mohammed M Alquraısh, Abdallah Bouabıdı, ve Mamdouh El Haj Assad. “Effects of Intake Manifold Geometry in H2 & CNG Fueled Engine Combustion”. Journal of Thermal Engineering 10, sy. 1 (Ocak 2024): 153-63. https://doi.org/10.18186/thermal.1429746.
EndNote Saaıdıa R, Ghrıss O, Köten H, M Alquraısh M, Bouabıdı A, El Haj Assad M (01 Ocak 2024) Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering 10 1 153–163.
IEEE R. Saaıdıa, O. Ghrıss, H. Köten, M. M Alquraısh, A. Bouabıdı, ve M. El Haj Assad, “Effects of intake manifold geometry in H2 & CNG fueled engine combustion”, Journal of Thermal Engineering, c. 10, sy. 1, ss. 153–163, 2024, doi: 10.18186/thermal.1429746.
ISNAD Saaıdıa, Rafaa vd. “Effects of Intake Manifold Geometry in H2 & CNG Fueled Engine Combustion”. Journal of Thermal Engineering 10/1 (Ocak 2024), 153-163. https://doi.org/10.18186/thermal.1429746.
JAMA Saaıdıa R, Ghrıss O, Köten H, M Alquraısh M, Bouabıdı A, El Haj Assad M. Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering. 2024;10:153–163.
MLA Saaıdıa, Rafaa vd. “Effects of Intake Manifold Geometry in H2 & CNG Fueled Engine Combustion”. Journal of Thermal Engineering, c. 10, sy. 1, 2024, ss. 153-6, doi:10.18186/thermal.1429746.
Vancouver Saaıdıa R, Ghrıss O, Köten H, M Alquraısh M, Bouabıdı A, El Haj Assad M. Effects of intake manifold geometry in H2 & CNG fueled engine combustion. Journal of Thermal Engineering. 2024;10(1):153-6.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering