Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 2, 273 - 285, 22.03.2024
https://doi.org/10.18186/thermal.1448547

Öz

Kaynakça

  • [1] Guo ZY. Frontier of heat transfer – microscale heat transfer. Adv Mech 2000;30:1–6.
  • [2] Singh PK, Lee YJ, Lee PS. Integrated thermal management techniques for high power electronic devices. Appl Therm Eng 2015;81:325–336.
  • [3] Zunaid M, Jindal A, Gakhar D, Sinha A. Numerical study of pressure drop and heat transfer in a straight rectangular and semi cylindrical projections microchannel heat sink. J Therm Eng 2017;3:1453–1465. [CrossRef]
  • [4] Kelly KW, Marques C. Fabrication and performance of a pin fin micro heat exchanger. ASME J Heat Transfer 2004;126:434–444. [CrossRef]
  • [5] Ortega A, Kim D, Kim SJ. Compact modeling of fluid flow and heat transfer in pin fin heat sinks. ASME J Heat Transfer 2004;48:342–350. [CrossRef]
  • [6] Sparrow EM, Grannis VB. Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins. Int J Heat Mass Transfer 1991;34:589–600. [CrossRef]
  • [7] Liao G, Wang X, Li J, Zhang F. A numerical comparison of thermal performance of in-line pin–fins in a wedge duct with three kinds of coolant. Int J Heat Mass Transfer 2014;77:1033–1042. [CrossRef]
  • [8] Thoble KA, Lawson SA, Thrift AA. Heat transfer from multiple arrays of low aspect ratio pin fins. Int J Heat Mass Transfer 2011;54:4099–4109. [CrossRef]
  • [9] Schnei B, Kuo CJ, Peles Y, Kosar A. Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transfer 2005;48:3615–3627. [CrossRef]
  • [10] Prasher RS, Dirner J, Chang J, Myers A, Chau D, He D, Prstic S. Nusselt number and friction factor of staggered array of low aspect ratio micro-pin-fins under cross flow for water as fluid. ASME J Heat Transfer. 2007;129:141–153. [CrossRef]
  • [11] Siu-Ho A, Qu W. Liquid single-phase flow in an array of micro-pin-fins — part I: heat transfer characteristics. ASME J Heat Transfer 2008;130. [CrossRef]
  • [12] Kosar A, Peles Y. Thermal-hydraulic performance of MEMS-based pin fin heat sink. ASME J Heat Transfer 2006;128:121–131. [CrossRef]
  • [13] Peles Y, Kosar A. Micro scale pin fin heat sinks — parametric performance evaluation study. IEEE Trans Components Packaging Technol 2007;30:855–865. [CrossRef]
  • [14] Liu MH, Liu D, Xu S, Chen YL. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink. Int J Heat Mass Transfer 2011;54:5602–5611. [CrossRef]
  • [15] Gunnasegaran P, Mohammed H, Shuaib N, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transfer 2010;37:1078–1086. [CrossRef]
  • [16] Kewalramani GV, Hedau G, Saha SK, Agraw A. Study of laminar single phase frictional factor and Nusselt number in In-line micro pin-fin heat sink for electronic cooling applications. Int J Heat Mass Transfer 2019;138:796–808. [CrossRef]
  • [17] Cheng Y. Numerical simulation of stacked microchannel heat sink with mixing-enhanced passive structure. Int Comm Heat Mass Transf 2007;34:295–303. [CrossRef]
  • [18] Xie G, Shen H, Wang CC, Zhang Y. Comparative study for convective heat transfer of counter-flow wavy double-layer microchannel heat sinks in staggered arrangement. Appl Therm Eng 2018;137:228–237. [CrossRef]
  • [19] Wang TH, Leng C, Wang XD. An improved design of double-layered microchannel heat sink with truncated top channels. Appl Therm Eng 2015;79:54–62. [CrossRef]
  • [20] Ding G, Wang G, Niu D, Zhao X, Wang Y, Xie F, Wang G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl Therm Eng 2015;85:61–70. [CrossRef]
  • [21] Kamaruzaman N, Sidik NA, Ghani IA. Hydrothermal performance of microchannel heat sink: The effect of channel design. Int J Heat Mass Transf 2017;107:21–44. [CrossRef]
  • [22] Sun H, Liu X, Zhang M, Wang Z, Chen J. Numerical analysis of fluid flow and heat transfer in micro-channel heat sinks with double-layered complex structure. Micromachines 2020;11:146. [CrossRef]
  • [23] Cheng W, Nian Y, Zhao R, Pan Y. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink. Int J Heat Mass Transf 2021;183. [CrossRef]
  • [24] Wang H, Xia G, Chai L. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls – Part 2: Pressure drop. Int J Heat Mass Transf 2016;97:1081–1090. [CrossRef]
  • [25] Bhandari P, Prajapati YK. Thermal performance of open microchannel heat sink with variable pin fin height. Int J Thermal Sci 2021;159. [CrossRef]
  • [26] Park C, Ali H, Abbas A, Khan M, Cheema T, Rehman MU. Parametric evaluation of a hydrofoil-shaped sidewall rib-employed microchannel heat sink with and without nano-encapsulated phase change material slurry as coolant. Appl Therm Eng 2020;178. [CrossRef]
  • [27] Grande WJ, Kandlikar SG. Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology. In: ASME 2004 2nd International Conference on Microchannels and Minichannels. Rochester, NY: 2004. [CrossRef]
  • [28] Luo Y, Wang H, Bai P, Cai R, Tang Y, Chen X, Li S, Wu G, Zhou G. A hybrid vapor chamber heat sink incorporating a vapor chamber and liquid cooling channel with outstanding thermal performance and hydraulic characteristics. Energy Convers Manag 2021;244. [CrossRef]
  • [29] Park CW, Ambreen T, Saleem A. Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square; circular and triangular fin cross-sections. Appl Therm Eng 2019;158. [CrossRef]
  • [30] Mohammadian SK, Zhang Y. Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers. Appl Therm Eng 2014;70:282–290. [CrossRef]
  • [31] Sartipzadeh O, Khoshvaght-Aliabadi M, Ahmadian E. Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS). Int Comm Heat Mass Transf 2017;81:19–27. [CrossRef]
  • [32] Arshad W, Ali H. Thermal performance investigation of staggered and inline pin fin heat sinks using water-based rutile and anatase TiO2 nanofluids. Energy Convers Manag 2015;106:793–803. [CrossRef]
  • [33] Kaya H, Ekiciler R, Arslan K. CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel. J Therm Eng 2019;5:123–137. [CrossRef]
  • [34] Ronge BP, Jadhav SV, Pawar PM. Effect of pin-fin geometry on microchannel performance. Chem Prod Process Model 2018;14. [CrossRef]
  • [35] Saha SK, Kewalramani GV, Agrawal A. Modeling of microchannel heat sinks for electronic cooling applications using volume averaging approach. Int J Heat Mass Transf 2017;115:395–409. [CrossRef]
  • [36] Bayazitoglu Y, Tullius TK, Tullius JF. Optimization of short micro pin fins in minichannels. Int J Heat Mass Transf 2012;55:3921–3932. [CrossRef]
  • [37] Huang Z, Zhao J, Huang S, Gong L. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl Therm Eng 2016;93:1347–1359. [CrossRef]
  • [38] Dechaumphai P, Sucharitpwatskul S, Sedthawat S. Heat transfer and thermal stress analysis. In: Finite Element Analysis with ANSYS Workbench. Oxford: Alpha Science International Ltd.; 2018. pp. 166–190.
  • [39] ANSYS FLUENT User’s Guide. Canonsburg, PA: ANSYS Inc.; 2013. pp. 15317.
  • [40] Cengel YA, Cimbala JM. Introduction to computational fluid dynamics. In: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill: 2006. pp. 817–833.
  • [41] Saeid NH. Thermal stress analysis of jet impingement cooling of a solid block. Heat Transf Eng 2023;44:87–101. [CrossRef]

Thermal stress analysis in pin fin microchannel heat sink

Yıl 2024, Cilt: 10 Sayı: 2, 273 - 285, 22.03.2024
https://doi.org/10.18186/thermal.1448547

Öz

The conjugate heat transfer and the thermal stresses produced within a pin-fin microchannel heat sink are investigated numerically. The pin-fin microchannel heat sink is subjected to a constant heat flux from the bottom surface and cooled by water flow through the channel across the pin fins. Rectangular cross-section microchannel incorporating one raw of square pin fins are considered. The water flowing through the microchannel at Reynolds number varies from 200 to 800. The heat sink dissipates constant heat flux in the range of 75-175 kW/m2. The selected materials used for the solid substrate are Copper, Aluminium, Titanium, and Structural steel. The results are presented as contour plots for the temperature, thermal stress, and deformation distribution. It is found that the heat dissipation and the Nusselt number are increased with increasing Reynolds number, increasing the thermal conductivity of the mate-rial but remain constant throughout various heat fluxes. Thermal stresses are increased with decreasing Reynolds number, increasing heat flux, and increasing Youngs’ Modulus of the substrate material. The total deformation is increased with decreasing Reynolds number, in-creasing heat flux, and increasing the thermal expansion coefficient of the substrate material.

Kaynakça

  • [1] Guo ZY. Frontier of heat transfer – microscale heat transfer. Adv Mech 2000;30:1–6.
  • [2] Singh PK, Lee YJ, Lee PS. Integrated thermal management techniques for high power electronic devices. Appl Therm Eng 2015;81:325–336.
  • [3] Zunaid M, Jindal A, Gakhar D, Sinha A. Numerical study of pressure drop and heat transfer in a straight rectangular and semi cylindrical projections microchannel heat sink. J Therm Eng 2017;3:1453–1465. [CrossRef]
  • [4] Kelly KW, Marques C. Fabrication and performance of a pin fin micro heat exchanger. ASME J Heat Transfer 2004;126:434–444. [CrossRef]
  • [5] Ortega A, Kim D, Kim SJ. Compact modeling of fluid flow and heat transfer in pin fin heat sinks. ASME J Heat Transfer 2004;48:342–350. [CrossRef]
  • [6] Sparrow EM, Grannis VB. Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins. Int J Heat Mass Transfer 1991;34:589–600. [CrossRef]
  • [7] Liao G, Wang X, Li J, Zhang F. A numerical comparison of thermal performance of in-line pin–fins in a wedge duct with three kinds of coolant. Int J Heat Mass Transfer 2014;77:1033–1042. [CrossRef]
  • [8] Thoble KA, Lawson SA, Thrift AA. Heat transfer from multiple arrays of low aspect ratio pin fins. Int J Heat Mass Transfer 2011;54:4099–4109. [CrossRef]
  • [9] Schnei B, Kuo CJ, Peles Y, Kosar A. Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transfer 2005;48:3615–3627. [CrossRef]
  • [10] Prasher RS, Dirner J, Chang J, Myers A, Chau D, He D, Prstic S. Nusselt number and friction factor of staggered array of low aspect ratio micro-pin-fins under cross flow for water as fluid. ASME J Heat Transfer. 2007;129:141–153. [CrossRef]
  • [11] Siu-Ho A, Qu W. Liquid single-phase flow in an array of micro-pin-fins — part I: heat transfer characteristics. ASME J Heat Transfer 2008;130. [CrossRef]
  • [12] Kosar A, Peles Y. Thermal-hydraulic performance of MEMS-based pin fin heat sink. ASME J Heat Transfer 2006;128:121–131. [CrossRef]
  • [13] Peles Y, Kosar A. Micro scale pin fin heat sinks — parametric performance evaluation study. IEEE Trans Components Packaging Technol 2007;30:855–865. [CrossRef]
  • [14] Liu MH, Liu D, Xu S, Chen YL. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink. Int J Heat Mass Transfer 2011;54:5602–5611. [CrossRef]
  • [15] Gunnasegaran P, Mohammed H, Shuaib N, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transfer 2010;37:1078–1086. [CrossRef]
  • [16] Kewalramani GV, Hedau G, Saha SK, Agraw A. Study of laminar single phase frictional factor and Nusselt number in In-line micro pin-fin heat sink for electronic cooling applications. Int J Heat Mass Transfer 2019;138:796–808. [CrossRef]
  • [17] Cheng Y. Numerical simulation of stacked microchannel heat sink with mixing-enhanced passive structure. Int Comm Heat Mass Transf 2007;34:295–303. [CrossRef]
  • [18] Xie G, Shen H, Wang CC, Zhang Y. Comparative study for convective heat transfer of counter-flow wavy double-layer microchannel heat sinks in staggered arrangement. Appl Therm Eng 2018;137:228–237. [CrossRef]
  • [19] Wang TH, Leng C, Wang XD. An improved design of double-layered microchannel heat sink with truncated top channels. Appl Therm Eng 2015;79:54–62. [CrossRef]
  • [20] Ding G, Wang G, Niu D, Zhao X, Wang Y, Xie F, Wang G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl Therm Eng 2015;85:61–70. [CrossRef]
  • [21] Kamaruzaman N, Sidik NA, Ghani IA. Hydrothermal performance of microchannel heat sink: The effect of channel design. Int J Heat Mass Transf 2017;107:21–44. [CrossRef]
  • [22] Sun H, Liu X, Zhang M, Wang Z, Chen J. Numerical analysis of fluid flow and heat transfer in micro-channel heat sinks with double-layered complex structure. Micromachines 2020;11:146. [CrossRef]
  • [23] Cheng W, Nian Y, Zhao R, Pan Y. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink. Int J Heat Mass Transf 2021;183. [CrossRef]
  • [24] Wang H, Xia G, Chai L. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls – Part 2: Pressure drop. Int J Heat Mass Transf 2016;97:1081–1090. [CrossRef]
  • [25] Bhandari P, Prajapati YK. Thermal performance of open microchannel heat sink with variable pin fin height. Int J Thermal Sci 2021;159. [CrossRef]
  • [26] Park C, Ali H, Abbas A, Khan M, Cheema T, Rehman MU. Parametric evaluation of a hydrofoil-shaped sidewall rib-employed microchannel heat sink with and without nano-encapsulated phase change material slurry as coolant. Appl Therm Eng 2020;178. [CrossRef]
  • [27] Grande WJ, Kandlikar SG. Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology. In: ASME 2004 2nd International Conference on Microchannels and Minichannels. Rochester, NY: 2004. [CrossRef]
  • [28] Luo Y, Wang H, Bai P, Cai R, Tang Y, Chen X, Li S, Wu G, Zhou G. A hybrid vapor chamber heat sink incorporating a vapor chamber and liquid cooling channel with outstanding thermal performance and hydraulic characteristics. Energy Convers Manag 2021;244. [CrossRef]
  • [29] Park CW, Ambreen T, Saleem A. Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square; circular and triangular fin cross-sections. Appl Therm Eng 2019;158. [CrossRef]
  • [30] Mohammadian SK, Zhang Y. Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers. Appl Therm Eng 2014;70:282–290. [CrossRef]
  • [31] Sartipzadeh O, Khoshvaght-Aliabadi M, Ahmadian E. Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS). Int Comm Heat Mass Transf 2017;81:19–27. [CrossRef]
  • [32] Arshad W, Ali H. Thermal performance investigation of staggered and inline pin fin heat sinks using water-based rutile and anatase TiO2 nanofluids. Energy Convers Manag 2015;106:793–803. [CrossRef]
  • [33] Kaya H, Ekiciler R, Arslan K. CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel. J Therm Eng 2019;5:123–137. [CrossRef]
  • [34] Ronge BP, Jadhav SV, Pawar PM. Effect of pin-fin geometry on microchannel performance. Chem Prod Process Model 2018;14. [CrossRef]
  • [35] Saha SK, Kewalramani GV, Agrawal A. Modeling of microchannel heat sinks for electronic cooling applications using volume averaging approach. Int J Heat Mass Transf 2017;115:395–409. [CrossRef]
  • [36] Bayazitoglu Y, Tullius TK, Tullius JF. Optimization of short micro pin fins in minichannels. Int J Heat Mass Transf 2012;55:3921–3932. [CrossRef]
  • [37] Huang Z, Zhao J, Huang S, Gong L. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl Therm Eng 2016;93:1347–1359. [CrossRef]
  • [38] Dechaumphai P, Sucharitpwatskul S, Sedthawat S. Heat transfer and thermal stress analysis. In: Finite Element Analysis with ANSYS Workbench. Oxford: Alpha Science International Ltd.; 2018. pp. 166–190.
  • [39] ANSYS FLUENT User’s Guide. Canonsburg, PA: ANSYS Inc.; 2013. pp. 15317.
  • [40] Cengel YA, Cimbala JM. Introduction to computational fluid dynamics. In: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill: 2006. pp. 817–833.
  • [41] Saeid NH. Thermal stress analysis of jet impingement cooling of a solid block. Heat Transf Eng 2023;44:87–101. [CrossRef]
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Makaleler
Yazarlar

Mohammad Nazirul Syafiqaiman Janı Bu kişi benim

Nawaf Saeid 0000-0001-9048-7032

Yayımlanma Tarihi 22 Mart 2024
Gönderilme Tarihi 6 Ekim 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Janı, M. N. S., & Saeid, N. (2024). Thermal stress analysis in pin fin microchannel heat sink. Journal of Thermal Engineering, 10(2), 273-285. https://doi.org/10.18186/thermal.1448547
AMA Janı MNS, Saeid N. Thermal stress analysis in pin fin microchannel heat sink. Journal of Thermal Engineering. Mart 2024;10(2):273-285. doi:10.18186/thermal.1448547
Chicago Janı, Mohammad Nazirul Syafiqaiman, ve Nawaf Saeid. “Thermal Stress Analysis in Pin Fin Microchannel Heat Sink”. Journal of Thermal Engineering 10, sy. 2 (Mart 2024): 273-85. https://doi.org/10.18186/thermal.1448547.
EndNote Janı MNS, Saeid N (01 Mart 2024) Thermal stress analysis in pin fin microchannel heat sink. Journal of Thermal Engineering 10 2 273–285.
IEEE M. N. S. Janı ve N. Saeid, “Thermal stress analysis in pin fin microchannel heat sink”, Journal of Thermal Engineering, c. 10, sy. 2, ss. 273–285, 2024, doi: 10.18186/thermal.1448547.
ISNAD Janı, Mohammad Nazirul Syafiqaiman - Saeid, Nawaf. “Thermal Stress Analysis in Pin Fin Microchannel Heat Sink”. Journal of Thermal Engineering 10/2 (Mart 2024), 273-285. https://doi.org/10.18186/thermal.1448547.
JAMA Janı MNS, Saeid N. Thermal stress analysis in pin fin microchannel heat sink. Journal of Thermal Engineering. 2024;10:273–285.
MLA Janı, Mohammad Nazirul Syafiqaiman ve Nawaf Saeid. “Thermal Stress Analysis in Pin Fin Microchannel Heat Sink”. Journal of Thermal Engineering, c. 10, sy. 2, 2024, ss. 273-85, doi:10.18186/thermal.1448547.
Vancouver Janı MNS, Saeid N. Thermal stress analysis in pin fin microchannel heat sink. Journal of Thermal Engineering. 2024;10(2):273-85.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering