Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 2, 386 - 395, 22.03.2024
https://doi.org/10.18186/thermal.1448665

Öz

Kaynakça

  • [1] Rghif Y, Colarossi D, Principi P. Salt gradient solar pond as a thermal energy storage system: A review from current gaps to future prospects. J Energy Storage 2023;61:106776. [CrossRef]
  • [2] Das R, Ganguly SA. comprehensive review on solar pond research in India: Past, present and future. Sol Energy 2022;247:5572. [CrossRef]
  • [3] Dineshkumar P, Raja M. Experimental study on the thermal performance of a KNO2-KNO3 mixture in a trapezoidal solar pond. J Mech Sci Technol 2021;35:5765–5772. [CrossRef]
  • [4] Meneses-Brassea BP, Perez A, Golding P. Practical design and construction of solar ponds. Sol Energy 2022;246:104112. [CrossRef]
  • [5] Wu Q, Yu J, Bu L, Nie Z, Wang Y, Renchen N, et al. The application of an enhanced salinity-gradient solar pond with nucleation matrix in lithium extraction from Zabuye salt lake in Tibet. Sol Energy 2022;244:104114. [CrossRef]
  • [6] Prajapati S, Mehta N, Yadav S. An overview of factors affecting salt gradient solar ponds. Mater Today Proc 2022;56:27422752. [CrossRef]
  • [7] Platikanov S, Tauler R, Cortina JL, Valderrama C. Multivariate analysis of the operational parameters and environmental factors of an industrial solar pond. Sol Energy 2021;223:113124. [CrossRef]
  • [8] Al-Iessa I, Reza Maddahian R, Maerefat M. Investigation of the PCM layer thickness and heat extraction on the thermal efficiency of salt gradient solar ponds. Case Stud Therm Engineer 2023;45:103014. [CrossRef]
  • [9] Jayathunga D, Weliwita JA, Karunathilake H, Witharana S. Economic feasibility of thermal energy storage-integrated concentrating solar power plants. Solar 2023;3:132160. [CrossRef]
  • [10] Yan G, Teng B, Elkamchouchi DH, Alkhalifah T, Alturise F, Khadimallah MA, et al. Analysis of portable solar concrete ponds by using coal cinder to trap thermal energy of sustainable building using artificial intelligence. Fuel 2023;348:128253. [CrossRef]
  • [11] Wang H, Zhang YC, Zhang LG. Effect of steel-wires and paraffin composite phase change materials on the heat exchange and exergetic performance of salt gradient solar pond. Energy Rep 2022;8:56785687. [CrossRef]
  • [12] Al-Musawi OAH, Khadom AA, Manhood HB, Mahdi MS. Solar pond as a low grade energy source for water desalination and power generation: a short review. Renew Energy Environ Sustain 2020;5:113. [CrossRef]
  • [13] Saxena A, Cuce E, Singh DB, Cuce PM, Gupta P, Suryavanshi A, et al. A thermodynamic review on solar ponds. Sol Energy 2022;242:335363. [CrossRef]
  • [14] Perumal P, Dharmalingam M. Solar ponds - A mini review. Environ Sci Pollut Res 2022:29:45063–45069. [CrossRef]
  • [15] Beiki H, Soukhtanlou E. Determination of optimum insulation thicknesses for salinity gradient solar pond’s bottom wall under different climate conditions. SN Appl Sci 2020;2:1284. [CrossRef]
  • [16] Rghif Y, Bahraoui F, Zeghmati B. Experimental and numerical investigations of heat and mass transfer in a salt gradient solar pond under a solar simulator. Sol Energy 2022;236:841859. [CrossRef]
  • [17] Abbood MH, Alhwayzee M, Sultan MA. Experimental investigation into the performance of the solar pond in Kerbala. IOP Conf Ser Mater Sci Eng 2021;1067:012098. [CrossRef]
  • [18] Farrokhi M, Jaefarzadeh MR, Bawahab M, Faqeha H, Akbarzadeh A. Integration of a solar pond in a salt work in Sabzevar in Northeast Iran. Sol Energy 2022;244:115125. [CrossRef]
  • [19] Nower M, Elashaal A, El-Serafy S. Solar ponds as source of non-conventional energy case study in Fayoum, Egypt. Int J Sci Engineer Sci 2022;6:115120.
  • [20] Montala M, Ganesan K, Casal O, Cortina JL, Santarelli M, Valderrama C. Energy, exergy and thermoeconomic analysis of an industrial solar pond. Sol Energy 2022;242:143156. [CrossRef]
  • [21] Elmurodov NS, Uzakov GN, Khatamov IA, Tilavov YS. Investigating the effect of different salts on the thermal efficiency of a solar pond device. E3S Web Conferences 2023:392:02038. [CrossRef]
  • [22] Thwayin WC, Altahan M, Sayer A. An experimental investigation to the use of calcium chloride in the water body construction of a salinity gradient solar pond. Ecology Environ Conser 2022;2877. [CrossRef]
  • [23] Sathish D, Jegadheeswaran S. Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review. J Therm Anal Calorim 2021;146:19231969. [CrossRef]
  • [24] Sathish D, Jegadheeswaran S. Experimental investigation on a novel composite salt gradient solar pond with an east–west side reflector. J Therm Sci Engineer Appl 2021;14:115. [CrossRef]
  • [25] Sayer AH, Al-Hussaini H, Campbell AN. An analytical estimation of salt concentration in the upper and lower convective zones of a salinity gradient solar pond with either a pond with vertical walls or trapezoidal cross section. Sol Energy 2017;158:207–217. [CrossRef]
  • [26] Bisht S, Dhindsa GS, Sehgal SS. Augmentation of diurnal and nocturnal distillate of solar still having wicks in the basin and integrated with solar pond. Mater Today Proc 2020;33:16151619. [CrossRef]
  • [27] Alcaraz A, Montala M, Valderrama C, Cortina JL, Akbarzadeh A, Farran A. Thermal performance of 500 m2 salinity gradient solar pond in Granada, Spain under strong weather conditions. Sol Energy 2018;171:223–228. [CrossRef]
  • [28] Assari MR, Beik AJG, Eydi R, Tabrizi HB. Thermal-salinity performance and stability analysis of the pilot salt-gradient solar ponds with phase change material. Sustain Energy Technol Assess 2022;53:102396. [CrossRef]
  • [29] Ines M, Paolo P, Roberto F, Mohamed S. Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator Solar Energy 2019;186:335–346. [CrossRef]

Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond

Yıl 2024, Cilt: 10 Sayı: 2, 386 - 395, 22.03.2024
https://doi.org/10.18186/thermal.1448665

Öz

Design of economical and effective solar ponds which are useful thermal energy storage devices, remains a huge challenge. The present work aims at investigating the thermal performance of low cost mini salt gradient solar pond. The portable pond was fabricated as a rectangular configuration having a volume of 0.5m3. Polystyrene and high density polyethylene sheets were employed for insulating the walls. The top of the pond was covered with a slender glass so that the dust accumulation could be prevented without affecting the absorption of solar radiation. Sodium chloride salt was used as the medium and the three salt gradient regions namely lower convective, non-convective, and upper convective regions were established through injection filling technique. The temperature and salt gradient data were observed experimentally for a period of 20 days at Coimbatore, India. The pond could absorb significant amount of available radiation (around 65%) and the maximum temperature of the pond was observed to be 49oC. Frequent washing of the water surface is necessary to maintain stable salt gradient. Nevertheless, portable pond fabricated with low cost materials exhibited good potential of storing solar energy for solar thermal applications.

Kaynakça

  • [1] Rghif Y, Colarossi D, Principi P. Salt gradient solar pond as a thermal energy storage system: A review from current gaps to future prospects. J Energy Storage 2023;61:106776. [CrossRef]
  • [2] Das R, Ganguly SA. comprehensive review on solar pond research in India: Past, present and future. Sol Energy 2022;247:5572. [CrossRef]
  • [3] Dineshkumar P, Raja M. Experimental study on the thermal performance of a KNO2-KNO3 mixture in a trapezoidal solar pond. J Mech Sci Technol 2021;35:5765–5772. [CrossRef]
  • [4] Meneses-Brassea BP, Perez A, Golding P. Practical design and construction of solar ponds. Sol Energy 2022;246:104112. [CrossRef]
  • [5] Wu Q, Yu J, Bu L, Nie Z, Wang Y, Renchen N, et al. The application of an enhanced salinity-gradient solar pond with nucleation matrix in lithium extraction from Zabuye salt lake in Tibet. Sol Energy 2022;244:104114. [CrossRef]
  • [6] Prajapati S, Mehta N, Yadav S. An overview of factors affecting salt gradient solar ponds. Mater Today Proc 2022;56:27422752. [CrossRef]
  • [7] Platikanov S, Tauler R, Cortina JL, Valderrama C. Multivariate analysis of the operational parameters and environmental factors of an industrial solar pond. Sol Energy 2021;223:113124. [CrossRef]
  • [8] Al-Iessa I, Reza Maddahian R, Maerefat M. Investigation of the PCM layer thickness and heat extraction on the thermal efficiency of salt gradient solar ponds. Case Stud Therm Engineer 2023;45:103014. [CrossRef]
  • [9] Jayathunga D, Weliwita JA, Karunathilake H, Witharana S. Economic feasibility of thermal energy storage-integrated concentrating solar power plants. Solar 2023;3:132160. [CrossRef]
  • [10] Yan G, Teng B, Elkamchouchi DH, Alkhalifah T, Alturise F, Khadimallah MA, et al. Analysis of portable solar concrete ponds by using coal cinder to trap thermal energy of sustainable building using artificial intelligence. Fuel 2023;348:128253. [CrossRef]
  • [11] Wang H, Zhang YC, Zhang LG. Effect of steel-wires and paraffin composite phase change materials on the heat exchange and exergetic performance of salt gradient solar pond. Energy Rep 2022;8:56785687. [CrossRef]
  • [12] Al-Musawi OAH, Khadom AA, Manhood HB, Mahdi MS. Solar pond as a low grade energy source for water desalination and power generation: a short review. Renew Energy Environ Sustain 2020;5:113. [CrossRef]
  • [13] Saxena A, Cuce E, Singh DB, Cuce PM, Gupta P, Suryavanshi A, et al. A thermodynamic review on solar ponds. Sol Energy 2022;242:335363. [CrossRef]
  • [14] Perumal P, Dharmalingam M. Solar ponds - A mini review. Environ Sci Pollut Res 2022:29:45063–45069. [CrossRef]
  • [15] Beiki H, Soukhtanlou E. Determination of optimum insulation thicknesses for salinity gradient solar pond’s bottom wall under different climate conditions. SN Appl Sci 2020;2:1284. [CrossRef]
  • [16] Rghif Y, Bahraoui F, Zeghmati B. Experimental and numerical investigations of heat and mass transfer in a salt gradient solar pond under a solar simulator. Sol Energy 2022;236:841859. [CrossRef]
  • [17] Abbood MH, Alhwayzee M, Sultan MA. Experimental investigation into the performance of the solar pond in Kerbala. IOP Conf Ser Mater Sci Eng 2021;1067:012098. [CrossRef]
  • [18] Farrokhi M, Jaefarzadeh MR, Bawahab M, Faqeha H, Akbarzadeh A. Integration of a solar pond in a salt work in Sabzevar in Northeast Iran. Sol Energy 2022;244:115125. [CrossRef]
  • [19] Nower M, Elashaal A, El-Serafy S. Solar ponds as source of non-conventional energy case study in Fayoum, Egypt. Int J Sci Engineer Sci 2022;6:115120.
  • [20] Montala M, Ganesan K, Casal O, Cortina JL, Santarelli M, Valderrama C. Energy, exergy and thermoeconomic analysis of an industrial solar pond. Sol Energy 2022;242:143156. [CrossRef]
  • [21] Elmurodov NS, Uzakov GN, Khatamov IA, Tilavov YS. Investigating the effect of different salts on the thermal efficiency of a solar pond device. E3S Web Conferences 2023:392:02038. [CrossRef]
  • [22] Thwayin WC, Altahan M, Sayer A. An experimental investigation to the use of calcium chloride in the water body construction of a salinity gradient solar pond. Ecology Environ Conser 2022;2877. [CrossRef]
  • [23] Sathish D, Jegadheeswaran S. Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review. J Therm Anal Calorim 2021;146:19231969. [CrossRef]
  • [24] Sathish D, Jegadheeswaran S. Experimental investigation on a novel composite salt gradient solar pond with an east–west side reflector. J Therm Sci Engineer Appl 2021;14:115. [CrossRef]
  • [25] Sayer AH, Al-Hussaini H, Campbell AN. An analytical estimation of salt concentration in the upper and lower convective zones of a salinity gradient solar pond with either a pond with vertical walls or trapezoidal cross section. Sol Energy 2017;158:207–217. [CrossRef]
  • [26] Bisht S, Dhindsa GS, Sehgal SS. Augmentation of diurnal and nocturnal distillate of solar still having wicks in the basin and integrated with solar pond. Mater Today Proc 2020;33:16151619. [CrossRef]
  • [27] Alcaraz A, Montala M, Valderrama C, Cortina JL, Akbarzadeh A, Farran A. Thermal performance of 500 m2 salinity gradient solar pond in Granada, Spain under strong weather conditions. Sol Energy 2018;171:223–228. [CrossRef]
  • [28] Assari MR, Beik AJG, Eydi R, Tabrizi HB. Thermal-salinity performance and stability analysis of the pilot salt-gradient solar ponds with phase change material. Sustain Energy Technol Assess 2022;53:102396. [CrossRef]
  • [29] Ines M, Paolo P, Roberto F, Mohamed S. Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator Solar Energy 2019;186:335–346. [CrossRef]
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Makaleler
Yazarlar

Sathish D 0000-0002-9494-0508

Selvaraj Jegadheeswaran Bu kişi benim 0000-0002-2540-0487

Murugan Veeramanıkandan Bu kişi benim 0000-0002-9255-382X

Seepana Praveenkumar Bu kişi benim 0000-0002-5667-9476

Raja Thırunavukkarasu Bu kişi benim 0000-0001-9319-3005

Yayımlanma Tarihi 22 Mart 2024
Gönderilme Tarihi 3 Mart 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA D, S., Jegadheeswaran, S., Veeramanıkandan, M., Praveenkumar, S., vd. (2024). Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond. Journal of Thermal Engineering, 10(2), 386-395. https://doi.org/10.18186/thermal.1448665
AMA D S, Jegadheeswaran S, Veeramanıkandan M, Praveenkumar S, Thırunavukkarasu R. Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond. Journal of Thermal Engineering. Mart 2024;10(2):386-395. doi:10.18186/thermal.1448665
Chicago D, Sathish, Selvaraj Jegadheeswaran, Murugan Veeramanıkandan, Seepana Praveenkumar, ve Raja Thırunavukkarasu. “Temperature and Salt Concentration Behavior of a Compact Rectangular Salinity Gradient Solar Pond”. Journal of Thermal Engineering 10, sy. 2 (Mart 2024): 386-95. https://doi.org/10.18186/thermal.1448665.
EndNote D S, Jegadheeswaran S, Veeramanıkandan M, Praveenkumar S, Thırunavukkarasu R (01 Mart 2024) Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond. Journal of Thermal Engineering 10 2 386–395.
IEEE S. D, S. Jegadheeswaran, M. Veeramanıkandan, S. Praveenkumar, ve R. Thırunavukkarasu, “Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond”, Journal of Thermal Engineering, c. 10, sy. 2, ss. 386–395, 2024, doi: 10.18186/thermal.1448665.
ISNAD D, Sathish vd. “Temperature and Salt Concentration Behavior of a Compact Rectangular Salinity Gradient Solar Pond”. Journal of Thermal Engineering 10/2 (Mart 2024), 386-395. https://doi.org/10.18186/thermal.1448665.
JAMA D S, Jegadheeswaran S, Veeramanıkandan M, Praveenkumar S, Thırunavukkarasu R. Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond. Journal of Thermal Engineering. 2024;10:386–395.
MLA D, Sathish vd. “Temperature and Salt Concentration Behavior of a Compact Rectangular Salinity Gradient Solar Pond”. Journal of Thermal Engineering, c. 10, sy. 2, 2024, ss. 386-95, doi:10.18186/thermal.1448665.
Vancouver D S, Jegadheeswaran S, Veeramanıkandan M, Praveenkumar S, Thırunavukkarasu R. Temperature and salt concentration behavior of a compact rectangular salinity gradient solar pond. Journal of Thermal Engineering. 2024;10(2):386-95.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering