Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 2, 457 - 478, 22.03.2024
https://doi.org/10.18186/thermal.1456700

Öz

Kaynakça

  • [1] Huang F, Zheng J, Baleynaud JM, Lu J. Heat recovery potentials and technologies in industrial zones. J Energy Institute 2017;90:951–961. [CrossRef]
  • [2] Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles - A review of various applications. Renew Sustain Energy Rev 2011;15:3963–3979. [CrossRef]
  • [3] Hamid Elsheikh M, Shnawah DA, Sabri MFM, Said SBM, Haji Hassan M, Ali Bashir MB, et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew Sustain Energy Rev 2014;30:337–355. [CrossRef]
  • [4] Çelik FG, Açikkalp E, Yamik H. Performance assessment of phosphoric acid fuel cell - Thermoelectric generator hybrid system with economic aspect. J Therm Engineer 2018;5:29–45. [CrossRef]
  • [5] Ismail BI, Ahmed WH. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents Electric Engineer 2009;2:27–39. [CrossRef]
  • [6] El-Adl AS, Mousa MG, Abdel-Hadi EA, Hegazi AA. Dynamic performance characteristics of a thermoelectric generator. J Therm Engineer 2019;5:385–395. [CrossRef]
  • [7] Remeli MF, Tan L, Date A, Singh B, Akbarzadeh A. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conver Manage 2015;91:110–119. [CrossRef]
  • [8] Fleurial JP. Thermoelectric power generation materials: Technology and application opportunities. J Mineral Metal Mater Soc 2009;61:79–85. [CrossRef]
  • [9] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001;413:597–602. [CrossRef]
  • [10] Chaturvedi E, Mamtani V. An investigative methodology through solid modelling and numerical analysis for designing a thermo-electric generator system. J Therm Engineer 2020;6:99–113. [CrossRef]
  • [11] Maneewan S, Chindaruksa S. Thermoelectric power generation system using waste heat from biomass drying. J Electron Mater 2009;38:974–980. [CrossRef]
  • [12] Kaibe H, Kajihara T, Fujimoto S. Recovery of plant waste heat by a thermoelectric generating system. Komatsu Tech Rep 2011;57:26–30.
  • [13] Meng F, Chen L, Sun F, Yang B. Thermoelectric power generation driven by blast furnace slag flushing water. Energy 2014;66:965–972. [CrossRef]
  • [14] Orr B, Singh B, Tan L, Akbarzadeh A. Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes. Appl Therm Eng 2014;73:588–597. [CrossRef]
  • [15] Alam M, Kumar K, Dutta V. Dynamic modeling and experimental analysis of waste heat recovery from the proton exchange membrane fuel cell using thermoelectric generator. Therm Sci Engineer Prog 2020;19:100627. [CrossRef]
  • [16] Aliahmadi M, Moosavi A, Sadrhosseini H. Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery. Energy Reports 2021;7:300–313. [CrossRef]
  • [17] Mohamed ES. Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions. Appl Therm Eng 2019;147:661–674. [CrossRef]
  • [18] Liu C, Pan X, Zheng X, Yan Y, Li W. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Institute 2016;89:271–281. [CrossRef]
  • [19] Bou Nader W. Thermoelectric generator optimization for hybrid electric vehicles. Appl Therm Eng 2020;167:114761. [CrossRef]
  • [20] Chen J, Xie W, Dai M, Shen G, Li G, Tang Y. Experiments on waste heat thermoelectric generation for passenger vehicles. Micromachines (Basel) 2022;13:1–14. [CrossRef]
  • [21] Alegria P, Catalan L, Araiz M, Rodriguez A, Astrain D. Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields. Appl Therm Eng 2022;200:117619. [CrossRef]
  • [22] Weng Z, Liu F, Zhu W, Li Y, Xie C, Deng J, et al. Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions. Appl Energy 2022;306:118005. [CrossRef]
  • [23] Chen J, Wang R, Luo D, Zhou W. Performance optimization of a segmented converging thermoelectric generator for waste heat recovery. Appl Therm Eng 2022;202:117843. [CrossRef]
  • [24] Alahmer A, Khalid MB, Beithou N, Borowski G, Alsaqoor S, Alhendi H. An experimental investigation into improving the performance of thermoelectric generators. J Ecological Engineer 2022;23:100–108. [CrossRef]
  • [25] Zheng LJ, Kang HW. A passive evaporative cooling heat sink method for enhancing low-grade waste heat recovery capacity of thermoelectric generators. Energy Conver Manage 2022;251:114931. [CrossRef]
  • [26] Badr F, Radwan A, Ahmed M, Hamed AM. An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods. Renew Energy 2022;185:1078–1094. [CrossRef]
  • [27] Mahdi MS, Abdulateef J, Abdulateef AM. Thermoelectric combined heat and power generation system integrated with Liquid-fuel stove. J Adv Res Fluid Mech Therm Sci 2018;51:19–30.
  • [28] Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Appl Energy 2017;185:1336–1342. [CrossRef]
  • [29] Zhang Y, Wang X, Cleary M, Schoensee L, Kempf N, Richardson J. High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Appl Therm Eng 2016;96:83–87. [CrossRef]
  • [30] Zarifi S, Mirhosseini Moghaddam M. Utilizing finned tube economizer for extending the thermal power rate of TEG CHP system. Energy 2020;202. [CrossRef]
  • [31] Zou WJ, Shen KY, Jung S, Kim YB. Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system. Energy 2021;229:120698. [CrossRef]
  • [32] Liu J, Shin KY, Kim SC. Comparison and parametric analysis of thermoelectric generator system for industrial waste heat recovery with three types of heat sinks: Numerical study. Energies (Basel) 2022;15. [CrossRef]
  • [33] Baroutaji A, Arjunan A, Ramadan M, Robinson J, Alaswad A, Abdelkareem MA, et al. Advancements and prospects of thermal management and waste heat recovery of PEMFC. Int J Thermofluids 2021;9:100064. [CrossRef]
  • [34] Cooper SJG, Hammond GP, Norman JB. Potential for use of heat rejected from industry in district heating networks, Gb perspective. J Energy Institute 2016;89:57–69. [CrossRef]
  • [35] Sulaiman MS, Singh B, Mohamed WANW. Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle. Energy 2019;179:628–646. [CrossRef]
  • [36] Zhang Y. Thermoelectric advances to capture waste heat in automobiles. ACS Energy Letters 2018;3:1523–1524. [CrossRef]
  • [37] He W, Wang S, Yue L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Appl Energy 2017;196:259–267. [CrossRef]
  • [38] Lan S, Yang Z, Chen R, Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl Energy 2018;210:327–338. [CrossRef]
  • [39] Gu W, Ma T, Song A, Li M, Shen L. Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Conver Manage 2019;198:111800. [CrossRef]
  • [40] Rejeb O, Shittu S, Ghenai C, Li G, Zhao X, Bettayeb M. Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renew Energy 2020;152:1342–1353. [CrossRef]
  • [41] Francioso L, De Pascali C, Sglavo V, Grazioli A, Masieri M, Siciliano P. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Conver Manag 2017;145:204–213. [CrossRef]
  • [42] Soleimani Z, Zoras S, Ceranic B, Shahzad S, Cui Y. Optimization of a wearable thermoelectric generator encapsulated in Polydimethylsiloxane (PDMS): A numerical modelling. 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019:212–215. [CrossRef]
  • [43] Borcuch M, Musiał M, Gumuła S, Sztekler K, Wojciechowski K. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Appl Therm Eng 2017;127:1355–1363. [CrossRef]
  • [44] Angeline AA, Jayakumar J, Asirvatham LG, Wongwises S. Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique. J Therm Engineer 2018;4:2149–2168. [CrossRef]
  • [45] Lan S, Yang Z, Chen R, Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl Energy 2018;210:327–338. [CrossRef]
  • [46] Meng F, Chen L, Feng Y, Xiong B. Thermoelectric generator for industrial gas phase waste heat recovery. Energy 2017;135:83–90. [CrossRef]
  • [47] Børset MT, Wilhelmsen Ø, Kjelstrup S, Burheim OS. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy 2017;118:865–875. [CrossRef]
  • [48] Araiz M, Martínez A, Astrain D, Aranguren P. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers. Energy Convers Manag 2017;137:155–164. [CrossRef]
  • [49] Mirhosseini M, Rezania A, Rosendahl L. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln. J Clean Prod 2019;232:1321–1334. [CrossRef]
  • [50] Wang C, Tang S, Liu X, Su GH, Tian W, Qiu S. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Appl Therm Eng 2020;175. [CrossRef]
  • [51] Zhao Y, Fan Y, Li W, Li Y, Ge M, Xie L. Experimental investigation of heat pipe thermoelectric generator. Energy Conver Manage 2022;252:115123. [CrossRef]
  • [52] Aranguren P, Araiz M, Astrain D, Martínez A. Thermoelectric generators for waste heat harvesting: A computational and experimental approach. Energy Conver Manage 2017;148:680–691. [CrossRef]
  • [53] Araiz M, Casi Á, Catalán L, Martínez Á, Astrain D. Prospects of waste-heat recovery from a real industry using thermoelectric generators : Economic and power output analysis. Energy Conver Manage 2020;205:112376. [CrossRef]
  • [54] Charilaou K, Kyratsi T, Louca LS. Design of an air-cooled thermoelectric generator system through modelling and simulations, for use in cement industries. Mater Today Proc 2019;44:3516–3524. [CrossRef]
  • [55] He W, Su Y, Riffat SB, Hou JX, Ji J. Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit. Appl Energy 2011;88:5083–5089. [CrossRef]
  • [56] Su CQ, Wang WS, Liu X, Deng YD. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud Therm Engineer 2014;4:85–91. [CrossRef]
  • [57] Kishore RA, Sanghadasa M, Priya S. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Sci Rep 2017;7. [CrossRef]
  • [58] Abdelkareem MA, Mahmoud MS, Elsaid K, Sayed ET, Wilberforce T, Al-Murisi M, et al. Prospects of thermoelectric generators with nanofluid. Therm Sci Engineer Prog 2022;29:101207. [CrossRef]
  • [59] Remeli MF, Singh B, Affandi NDN, Ding LC, Date A, Akbarzadeh A. Investigation of counter-flow in a heat pipe–thermoelectric generator (HPTEG). J Electron Mater 2017;46:3115–3123. [CrossRef]
  • [60] Chandra V, Balasinorwala T, Dhokey NB. Dimensionless model and performance analysis of low temperature thermoelectric materials. Mater Today Proc 2021;43:3095–3099. [CrossRef]
  • [61] Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers and Solar Cells. New York: Wiley; 2010.
  • [62] Sempels EV, Kempers R, Lesage FJ. Load-bearing figure-of-merit characterization of a thermoelectric module. IEEE Trans Compon Packaging Manuf Technol 2016;6:50–57. [CrossRef]
  • [63] Barry M, Li J. Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery. J Heat Transf 2019;135.
  • [64] Huang GY, Hsu CT, Fang CJ, Yao DJ. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis. Energy Conver Manage 2016;126:581–594. [CrossRef]
  • [65] Žukauskas A, Ulinskas R. Efficiency parameters for heat transfer in tube banks. Heat Transf Engineer 1985;6:19–25. [CrossRef]
  • [66] Kumar V, Gangacharyulu D, Tathgir RG. Thermal performance evaluation of heat pipe heat exchangers under natural convection. Int J Heat Exchangers 2006;7:103–122.
  • [67] Sulaiman MS, Singh B, Mohamed WANW. Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle. Energy 2019;179:628–646. [CrossRef]
  • [68] Zamri NF, Hamdan MH, Anuar SNA, Mohamed WANW, Remeli MF. Performance of a plate-finned thermoelectric generator (TEG) module for industrial waste heat recovery. J Mech Engineer 2022;19:257–272. [CrossRef]
  • [69] Luo D, Wang R, Yu W, Sun Z, Meng X. Theoretical analysis of energy recovery potential for different types of conventional vehicles with a thermoelectric generator. Energy Procedia 2019;158:142–147. [CrossRef]

Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery

Yıl 2024, Cilt: 10 Sayı: 2, 457 - 478, 22.03.2024
https://doi.org/10.18186/thermal.1456700

Öz

In the sustainable energy agenda, thermoelectric generators (TEG) can be a central technology for low-cost combined heat and power (CHP) systems. TEG module (TEM) is the combination of TEG cells, heat pipes, heat sinks and copper blocks that produce electrical power and thermal energy for low temperature heating simultaneously. Two TEG cells were used in each TEM for CHP in a bakery factory with a reference waste heat temperature of 250°C. Different designs of TEM affect the heat transfer mechanics through the components. However, actual testing of each design requires high cost and time consuming. Identifying the principal parameters affecting the desired output is indeed important before investing in actual design fabrication. One-dimensional model is developed in this manuscript to evaluate the fundamental interactions between each component. Parametric variation for nine main parameters characterized the steady-state response of each parameter under four novel heat sink configurations. The parameter sweeps approach benefits in designing a novel TEM for optimum system output. An improved TEM with 6 TEG cells was designed and it increased the heat recovery ratio from an initial 14% to 38%. The Reynolds number of streams are the major operating parameter as it influences the heat sink effectiveness. Large heat exchanger frontal area and copper block housing surface area are also significant parameters. Identification of these principle parameters would assist in effective designs of TEM systems for industrial CHP.

Kaynakça

  • [1] Huang F, Zheng J, Baleynaud JM, Lu J. Heat recovery potentials and technologies in industrial zones. J Energy Institute 2017;90:951–961. [CrossRef]
  • [2] Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles - A review of various applications. Renew Sustain Energy Rev 2011;15:3963–3979. [CrossRef]
  • [3] Hamid Elsheikh M, Shnawah DA, Sabri MFM, Said SBM, Haji Hassan M, Ali Bashir MB, et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew Sustain Energy Rev 2014;30:337–355. [CrossRef]
  • [4] Çelik FG, Açikkalp E, Yamik H. Performance assessment of phosphoric acid fuel cell - Thermoelectric generator hybrid system with economic aspect. J Therm Engineer 2018;5:29–45. [CrossRef]
  • [5] Ismail BI, Ahmed WH. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents Electric Engineer 2009;2:27–39. [CrossRef]
  • [6] El-Adl AS, Mousa MG, Abdel-Hadi EA, Hegazi AA. Dynamic performance characteristics of a thermoelectric generator. J Therm Engineer 2019;5:385–395. [CrossRef]
  • [7] Remeli MF, Tan L, Date A, Singh B, Akbarzadeh A. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conver Manage 2015;91:110–119. [CrossRef]
  • [8] Fleurial JP. Thermoelectric power generation materials: Technology and application opportunities. J Mineral Metal Mater Soc 2009;61:79–85. [CrossRef]
  • [9] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001;413:597–602. [CrossRef]
  • [10] Chaturvedi E, Mamtani V. An investigative methodology through solid modelling and numerical analysis for designing a thermo-electric generator system. J Therm Engineer 2020;6:99–113. [CrossRef]
  • [11] Maneewan S, Chindaruksa S. Thermoelectric power generation system using waste heat from biomass drying. J Electron Mater 2009;38:974–980. [CrossRef]
  • [12] Kaibe H, Kajihara T, Fujimoto S. Recovery of plant waste heat by a thermoelectric generating system. Komatsu Tech Rep 2011;57:26–30.
  • [13] Meng F, Chen L, Sun F, Yang B. Thermoelectric power generation driven by blast furnace slag flushing water. Energy 2014;66:965–972. [CrossRef]
  • [14] Orr B, Singh B, Tan L, Akbarzadeh A. Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes. Appl Therm Eng 2014;73:588–597. [CrossRef]
  • [15] Alam M, Kumar K, Dutta V. Dynamic modeling and experimental analysis of waste heat recovery from the proton exchange membrane fuel cell using thermoelectric generator. Therm Sci Engineer Prog 2020;19:100627. [CrossRef]
  • [16] Aliahmadi M, Moosavi A, Sadrhosseini H. Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery. Energy Reports 2021;7:300–313. [CrossRef]
  • [17] Mohamed ES. Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions. Appl Therm Eng 2019;147:661–674. [CrossRef]
  • [18] Liu C, Pan X, Zheng X, Yan Y, Li W. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Institute 2016;89:271–281. [CrossRef]
  • [19] Bou Nader W. Thermoelectric generator optimization for hybrid electric vehicles. Appl Therm Eng 2020;167:114761. [CrossRef]
  • [20] Chen J, Xie W, Dai M, Shen G, Li G, Tang Y. Experiments on waste heat thermoelectric generation for passenger vehicles. Micromachines (Basel) 2022;13:1–14. [CrossRef]
  • [21] Alegria P, Catalan L, Araiz M, Rodriguez A, Astrain D. Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields. Appl Therm Eng 2022;200:117619. [CrossRef]
  • [22] Weng Z, Liu F, Zhu W, Li Y, Xie C, Deng J, et al. Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions. Appl Energy 2022;306:118005. [CrossRef]
  • [23] Chen J, Wang R, Luo D, Zhou W. Performance optimization of a segmented converging thermoelectric generator for waste heat recovery. Appl Therm Eng 2022;202:117843. [CrossRef]
  • [24] Alahmer A, Khalid MB, Beithou N, Borowski G, Alsaqoor S, Alhendi H. An experimental investigation into improving the performance of thermoelectric generators. J Ecological Engineer 2022;23:100–108. [CrossRef]
  • [25] Zheng LJ, Kang HW. A passive evaporative cooling heat sink method for enhancing low-grade waste heat recovery capacity of thermoelectric generators. Energy Conver Manage 2022;251:114931. [CrossRef]
  • [26] Badr F, Radwan A, Ahmed M, Hamed AM. An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods. Renew Energy 2022;185:1078–1094. [CrossRef]
  • [27] Mahdi MS, Abdulateef J, Abdulateef AM. Thermoelectric combined heat and power generation system integrated with Liquid-fuel stove. J Adv Res Fluid Mech Therm Sci 2018;51:19–30.
  • [28] Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Appl Energy 2017;185:1336–1342. [CrossRef]
  • [29] Zhang Y, Wang X, Cleary M, Schoensee L, Kempf N, Richardson J. High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Appl Therm Eng 2016;96:83–87. [CrossRef]
  • [30] Zarifi S, Mirhosseini Moghaddam M. Utilizing finned tube economizer for extending the thermal power rate of TEG CHP system. Energy 2020;202. [CrossRef]
  • [31] Zou WJ, Shen KY, Jung S, Kim YB. Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system. Energy 2021;229:120698. [CrossRef]
  • [32] Liu J, Shin KY, Kim SC. Comparison and parametric analysis of thermoelectric generator system for industrial waste heat recovery with three types of heat sinks: Numerical study. Energies (Basel) 2022;15. [CrossRef]
  • [33] Baroutaji A, Arjunan A, Ramadan M, Robinson J, Alaswad A, Abdelkareem MA, et al. Advancements and prospects of thermal management and waste heat recovery of PEMFC. Int J Thermofluids 2021;9:100064. [CrossRef]
  • [34] Cooper SJG, Hammond GP, Norman JB. Potential for use of heat rejected from industry in district heating networks, Gb perspective. J Energy Institute 2016;89:57–69. [CrossRef]
  • [35] Sulaiman MS, Singh B, Mohamed WANW. Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle. Energy 2019;179:628–646. [CrossRef]
  • [36] Zhang Y. Thermoelectric advances to capture waste heat in automobiles. ACS Energy Letters 2018;3:1523–1524. [CrossRef]
  • [37] He W, Wang S, Yue L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Appl Energy 2017;196:259–267. [CrossRef]
  • [38] Lan S, Yang Z, Chen R, Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl Energy 2018;210:327–338. [CrossRef]
  • [39] Gu W, Ma T, Song A, Li M, Shen L. Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Conver Manage 2019;198:111800. [CrossRef]
  • [40] Rejeb O, Shittu S, Ghenai C, Li G, Zhao X, Bettayeb M. Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renew Energy 2020;152:1342–1353. [CrossRef]
  • [41] Francioso L, De Pascali C, Sglavo V, Grazioli A, Masieri M, Siciliano P. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Conver Manag 2017;145:204–213. [CrossRef]
  • [42] Soleimani Z, Zoras S, Ceranic B, Shahzad S, Cui Y. Optimization of a wearable thermoelectric generator encapsulated in Polydimethylsiloxane (PDMS): A numerical modelling. 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019:212–215. [CrossRef]
  • [43] Borcuch M, Musiał M, Gumuła S, Sztekler K, Wojciechowski K. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Appl Therm Eng 2017;127:1355–1363. [CrossRef]
  • [44] Angeline AA, Jayakumar J, Asirvatham LG, Wongwises S. Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique. J Therm Engineer 2018;4:2149–2168. [CrossRef]
  • [45] Lan S, Yang Z, Chen R, Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl Energy 2018;210:327–338. [CrossRef]
  • [46] Meng F, Chen L, Feng Y, Xiong B. Thermoelectric generator for industrial gas phase waste heat recovery. Energy 2017;135:83–90. [CrossRef]
  • [47] Børset MT, Wilhelmsen Ø, Kjelstrup S, Burheim OS. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy 2017;118:865–875. [CrossRef]
  • [48] Araiz M, Martínez A, Astrain D, Aranguren P. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers. Energy Convers Manag 2017;137:155–164. [CrossRef]
  • [49] Mirhosseini M, Rezania A, Rosendahl L. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln. J Clean Prod 2019;232:1321–1334. [CrossRef]
  • [50] Wang C, Tang S, Liu X, Su GH, Tian W, Qiu S. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Appl Therm Eng 2020;175. [CrossRef]
  • [51] Zhao Y, Fan Y, Li W, Li Y, Ge M, Xie L. Experimental investigation of heat pipe thermoelectric generator. Energy Conver Manage 2022;252:115123. [CrossRef]
  • [52] Aranguren P, Araiz M, Astrain D, Martínez A. Thermoelectric generators for waste heat harvesting: A computational and experimental approach. Energy Conver Manage 2017;148:680–691. [CrossRef]
  • [53] Araiz M, Casi Á, Catalán L, Martínez Á, Astrain D. Prospects of waste-heat recovery from a real industry using thermoelectric generators : Economic and power output analysis. Energy Conver Manage 2020;205:112376. [CrossRef]
  • [54] Charilaou K, Kyratsi T, Louca LS. Design of an air-cooled thermoelectric generator system through modelling and simulations, for use in cement industries. Mater Today Proc 2019;44:3516–3524. [CrossRef]
  • [55] He W, Su Y, Riffat SB, Hou JX, Ji J. Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit. Appl Energy 2011;88:5083–5089. [CrossRef]
  • [56] Su CQ, Wang WS, Liu X, Deng YD. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud Therm Engineer 2014;4:85–91. [CrossRef]
  • [57] Kishore RA, Sanghadasa M, Priya S. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Sci Rep 2017;7. [CrossRef]
  • [58] Abdelkareem MA, Mahmoud MS, Elsaid K, Sayed ET, Wilberforce T, Al-Murisi M, et al. Prospects of thermoelectric generators with nanofluid. Therm Sci Engineer Prog 2022;29:101207. [CrossRef]
  • [59] Remeli MF, Singh B, Affandi NDN, Ding LC, Date A, Akbarzadeh A. Investigation of counter-flow in a heat pipe–thermoelectric generator (HPTEG). J Electron Mater 2017;46:3115–3123. [CrossRef]
  • [60] Chandra V, Balasinorwala T, Dhokey NB. Dimensionless model and performance analysis of low temperature thermoelectric materials. Mater Today Proc 2021;43:3095–3099. [CrossRef]
  • [61] Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers and Solar Cells. New York: Wiley; 2010.
  • [62] Sempels EV, Kempers R, Lesage FJ. Load-bearing figure-of-merit characterization of a thermoelectric module. IEEE Trans Compon Packaging Manuf Technol 2016;6:50–57. [CrossRef]
  • [63] Barry M, Li J. Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery. J Heat Transf 2019;135.
  • [64] Huang GY, Hsu CT, Fang CJ, Yao DJ. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis. Energy Conver Manage 2016;126:581–594. [CrossRef]
  • [65] Žukauskas A, Ulinskas R. Efficiency parameters for heat transfer in tube banks. Heat Transf Engineer 1985;6:19–25. [CrossRef]
  • [66] Kumar V, Gangacharyulu D, Tathgir RG. Thermal performance evaluation of heat pipe heat exchangers under natural convection. Int J Heat Exchangers 2006;7:103–122.
  • [67] Sulaiman MS, Singh B, Mohamed WANW. Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle. Energy 2019;179:628–646. [CrossRef]
  • [68] Zamri NF, Hamdan MH, Anuar SNA, Mohamed WANW, Remeli MF. Performance of a plate-finned thermoelectric generator (TEG) module for industrial waste heat recovery. J Mech Engineer 2022;19:257–272. [CrossRef]
  • [69] Luo D, Wang R, Yu W, Sun Z, Meng X. Theoretical analysis of energy recovery potential for different types of conventional vehicles with a thermoelectric generator. Energy Procedia 2019;158:142–147. [CrossRef]
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Makaleler
Yazarlar

Wan Ahmad Najmi Wan Mohamed Bu kişi benim 0009-0003-8430-1512

Nur Faranini Zamri Bu kişi benim 0000-0002-8566-4118

Muhammad Fairuz Remeli Bu kişi benim 0000-0002-7203-4053

Yayımlanma Tarihi 22 Mart 2024
Gönderilme Tarihi 19 Mayıs 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Mohamed, W. A. N. W., Zamri, N. F., & Remeli, M. F. (2024). Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery. Journal of Thermal Engineering, 10(2), 457-478. https://doi.org/10.18186/thermal.1456700
AMA Mohamed WANW, Zamri NF, Remeli MF. Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery. Journal of Thermal Engineering. Mart 2024;10(2):457-478. doi:10.18186/thermal.1456700
Chicago Mohamed, Wan Ahmad Najmi Wan, Nur Faranini Zamri, ve Muhammad Fairuz Remeli. “Principal Parameters of Thermoelectric Generator Module Design for Effective Industrial Waste Heat Recovery”. Journal of Thermal Engineering 10, sy. 2 (Mart 2024): 457-78. https://doi.org/10.18186/thermal.1456700.
EndNote Mohamed WANW, Zamri NF, Remeli MF (01 Mart 2024) Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery. Journal of Thermal Engineering 10 2 457–478.
IEEE W. A. N. W. Mohamed, N. F. Zamri, ve M. F. Remeli, “Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery”, Journal of Thermal Engineering, c. 10, sy. 2, ss. 457–478, 2024, doi: 10.18186/thermal.1456700.
ISNAD Mohamed, Wan Ahmad Najmi Wan vd. “Principal Parameters of Thermoelectric Generator Module Design for Effective Industrial Waste Heat Recovery”. Journal of Thermal Engineering 10/2 (Mart 2024), 457-478. https://doi.org/10.18186/thermal.1456700.
JAMA Mohamed WANW, Zamri NF, Remeli MF. Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery. Journal of Thermal Engineering. 2024;10:457–478.
MLA Mohamed, Wan Ahmad Najmi Wan vd. “Principal Parameters of Thermoelectric Generator Module Design for Effective Industrial Waste Heat Recovery”. Journal of Thermal Engineering, c. 10, sy. 2, 2024, ss. 457-78, doi:10.18186/thermal.1456700.
Vancouver Mohamed WANW, Zamri NF, Remeli MF. Principal parameters of thermoelectric generator module design for effective industrial waste heat recovery. Journal of Thermal Engineering. 2024;10(2):457-78.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering