Araştırma Makalesi
BibTex RIS Kaynak Göster

Etriyesiz FRP Boyuna Donatılı Betonarme Kirişlerin (a/d>2.5) Kesme Davranışları

Yıl 2024, Cilt: 16 Sayı: 1, 416 - 431, 31.01.2024
https://doi.org/10.29137/umagd.1404776

Öz

Yüksek korozyon dayanımına sahip olan FRP donatıların (enine ve boyuna donatı) kullanımı gün geçtikçe yaygınlaşmaktadır. Ancak çelik donatılara kıyasla düşük elastisite modülü değerine sahip olan FRP donatılar betonarme kirişlerin çatlama dayanımını azaltmaktadır. Bu çalışmada temel amaç a/d>2.5 olan ve kesme donatısı bulunmayan FRP boyuna donatılı kirişlerin kesme davranışlarını ve dayanımlarını incelemektir. Bu kapsamda literatürde bulunan 149 deney verisi kullanılarak bir veri tabanı oluşturulmuştur. Literatürde sıklıkla kullanılan yönetmelikler ve modeller ile kesme dayanımları tahmin edilmiştir. Kesme dayanımını etkileyen değişkenler araştırılmıştır. Ayrıca, kesme donatısı bulunmayan FRP donatılı betonarme kirişlerin kesme tasarımı için yeni bir model önerilmiştir. Mevcut yönetmelik ve modellere göre önerilen model ile, deneysel sonuçlara daha yakın tahminler elde edilmiştir.

Kaynakça

  • ACI (American Concrete Institute). (2015). Guide for the design and construction of structural concrete reinforced with fiber reinforced polymer (FRP) bars. ACI 440.1 R-15. Farmington Hills, MI: ACI.
  • Alam, M. S., & Gazder, U. (2020). Shear strength prediction of FRP reinforced concrete members using generalized regression neural network. Neural Computing and Applications, 32, 6151-6158.
  • Alguhi, H., & Tomlinson, D. (2021). One-way shear strength of FRP–reinforced concrete members without stirrups: Design provision review. Journal of Composites for Construction, 25(3), 04021016.
  • Ali, A. H., Mohamed, H. M., Benmokrane, B., & ElSafty, A. (2019). Theory-based approaches and microstructural analysis to evaluate the service life-retention of stressed carbon fiber composite strands for concrete bridge applications. Composites Part B: Engineering, 165, 279-292.
  • Ali, A. H., Mohamed, H. M., Chalioris, C. E., & Deifalla, A. (2021). Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement. Engineering Structures, 235, 112017.
  • Ali, A. H., Mohamed, H. M., ElSafty, A., & Benmokrane, B. (2015, July). Long-term durability testing of Tokyo rope carbon cables. In 20th International Conference on Composite Materials, Copenhagen (pp. 19-24).
  • Alkhrdaji, T., Wideman, M., Belarbi, A., & Nanni, A. (2001, October). Shear strength of GFRP RC beams and slabs. In Proceedings of the international conference, composites in construction-CCC (pp. 409-414).
  • Ashour, A. F. (2006). Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, 20(10), 1005-1015.
  • Ashour, A. F., & Kara, I. F. (2014). Size effect on shear strength of FRP reinforced concrete beams. Composites Part B: Engineering, 60, 612-620.
  • Barris, C., Torres, L., Vilanova, I., Mias, C., & Llorens, M. (2017). Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams. Engineering structures, 131, 231-242.
  • Bentz, E. C., Massam, L., & Collins, M. P. (2010). Shear strength of large concrete members with FRP reinforcement. Journal of Composites for Construction, 14(6), 637-646.
  • BISE (British Institution of Structural Engineers). (1999). “Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement.” In IStructE, 98–100. London: SETO.
  • CNR-DT.203, (2007). Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars, in (Advisory Committee on Technical Recommendations for Construction).
  • CSA (Canadian Standards Association). (2012). Design and construction of building structures with fibre-reinforced polymers. CSA S806-12. Mississauga, ON, Canada: CSA.
  • El Zareef, M. A., Elbisy, M. S., & Badawi, M. (2021). Evaluation of code provisions predicting the concrete shear strength of FRP-reinforced members without shear reinforcement. Composite Structures, 275, 114430.
  • Elghandour, B., Eltahawy, R., Shedid, M., & Abdelrahman, A. (2023). Prediction of shear strength for CFRP reinforced concrete beams without stirrups. Engineering Structures, 284, 115946.
  • El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Materials Journal, 103(3), 383.
  • El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear strength of FRP-reinforced concrete beams without transverse reinforcement. ACI Materials Journal, 103(2), 235.
  • El-Sayed, A., El-Salakawy, E., & Benmokrane, B. (2005). Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars. Journal of Composites for Construction, 9(2), 147-157.
  • Gross, S. P., Yost, J. R., Dinehart, D. W., Svensen, E., & Liu, N. (2003). Shear strength of normal and high strength concrete beams reinforced with GFRP bars. In High performance materials in bridges (pp. 426-437).
  • ISIS (Intelligent Sensing for Innovative Structures). (2007). Reinforced concrete structures with fibre-reinforced polymers. Design Manual No. 3. Winnipeg, MB, Canada: Canadian Network of Centres of Excellence.
  • Issa, M. A., Ovitigala, T., & Ibrahim, M. (2016). Shear behavior of basalt fiber reinforced concrete beams with and without basalt FRP stirrups. Journal of Composites for Construction, 20(4), 04015083.
  • JSCE (Japanese Society of Civil Engineering). (1997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Tokyo: JSCE.
  • Jumaa, G. B., & Yousif, A. R. (2019). Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Construction and Building Materials, 209, 77-94.
  • Kara, I. F. (2011). Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming. Advances in Engineering Software, 42(6), 295-304.
  • Kaszubska, M., Kotynia, R., & Barros, J. A. (2017). Influence of longitudinal GFRP reinforcement ratio on shear capacity of concrete beams without stirrups. Procedia engineering, 193, 361-368.
  • Kocaoz, S., Samaranayake, V. A., & Nanni, A. (2005). Tensile characterization of glass FRP bars. Composites Part B: Engineering, 36(2), 127-134.
  • Matta, F., El-Sayed, A. K., Nanni, A., & Benmokrane, B. (2013). Size Effect on Concrete Shear Strength in Beams Reinforced with Fiber-Reinforced Polymer Bars. ACI Structural Journal, 110(4).
  • Nehdi, M., El Chabib, H., & Saïd, A. A. (2007). Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. Journal of materials in civil engineering, 19(12), 1033-1042.
  • Park, H. G., & Choi, K. K. (2017). Unified shear design method of concrete beams based on compression zone failure mechanism. Concrete International, 39(9), 59-63.
  • Razaqpur, A. G., & Isgor, O. B. (2006). Proposed shear design method for FRP-reinforced concrete members without stirrups. ACI Structural Journal, 103(1), 93.
  • Tariq, M., & Newhook, J. P. (2003, June). Shear testing of FRP reinforced concrete without transverse reinforcement. In Proceedings, Annual Conference of the Canadian Society for Civil Engineering (pp. 1330-1339).
  • Tomlinson, D., & Fam, A. (2015). Performance of concrete beams reinforced with basalt FRP for flexure and shear. Journal of composites for construction, 19(2), 04014036.
  • Tureyen, A. K., & Frosch, R. J. (2002). Shear tests of FRP-reinforced concrete beams without stirrups. Structural Journal, 99(4), 427-434.
  • Tureyen, A. K., & Frosch, R. J. (2003). Concrete shear strength: Another perspective. Structural Journal, 100(5), 609-615.
  • Yost, J. R., Gross, S. P., & Dinehart, D. W. (2001). Shear strength of normal strength concrete beams reinforced with deformed GFRP bars. Journal of composites for construction, 5(4), 268-275.

Shear Behaviors of FRP Longitudinally Reinforced Concrete Beams Without Stirrups (a/d>2.5)

Yıl 2024, Cilt: 16 Sayı: 1, 416 - 431, 31.01.2024
https://doi.org/10.29137/umagd.1404776

Öz

The use of Fiber-Reinforced Polymer (FRP) reinforcements, both transversely and longitudinally, is becoming increasingly widespread due to their high corrosion resistance. However, FRP reinforcements, with a lower modulus of elasticity compared to steel reinforcements, contribute to a reduction in the cracking strength of reinforced concrete beams. The main aim of the present study is to investigate the shear behavior and strength of FRP longitudinally reinforced beams (a/d>2.5) without shear reinforcements. To achieve this, a database was established using 149 experimental data available in the literature. Shear strengths were predicted with commonly used existing codes and models in the literature. Variables affecting shear strength were investigated. Additionally, a new model for the shear design of FRP-reinforced reinforced concrete beams without shear reinforcements was proposed. The proposed model yielded closer predictions to experimental results compared to existing codes and models.

Kaynakça

  • ACI (American Concrete Institute). (2015). Guide for the design and construction of structural concrete reinforced with fiber reinforced polymer (FRP) bars. ACI 440.1 R-15. Farmington Hills, MI: ACI.
  • Alam, M. S., & Gazder, U. (2020). Shear strength prediction of FRP reinforced concrete members using generalized regression neural network. Neural Computing and Applications, 32, 6151-6158.
  • Alguhi, H., & Tomlinson, D. (2021). One-way shear strength of FRP–reinforced concrete members without stirrups: Design provision review. Journal of Composites for Construction, 25(3), 04021016.
  • Ali, A. H., Mohamed, H. M., Benmokrane, B., & ElSafty, A. (2019). Theory-based approaches and microstructural analysis to evaluate the service life-retention of stressed carbon fiber composite strands for concrete bridge applications. Composites Part B: Engineering, 165, 279-292.
  • Ali, A. H., Mohamed, H. M., Chalioris, C. E., & Deifalla, A. (2021). Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement. Engineering Structures, 235, 112017.
  • Ali, A. H., Mohamed, H. M., ElSafty, A., & Benmokrane, B. (2015, July). Long-term durability testing of Tokyo rope carbon cables. In 20th International Conference on Composite Materials, Copenhagen (pp. 19-24).
  • Alkhrdaji, T., Wideman, M., Belarbi, A., & Nanni, A. (2001, October). Shear strength of GFRP RC beams and slabs. In Proceedings of the international conference, composites in construction-CCC (pp. 409-414).
  • Ashour, A. F. (2006). Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, 20(10), 1005-1015.
  • Ashour, A. F., & Kara, I. F. (2014). Size effect on shear strength of FRP reinforced concrete beams. Composites Part B: Engineering, 60, 612-620.
  • Barris, C., Torres, L., Vilanova, I., Mias, C., & Llorens, M. (2017). Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams. Engineering structures, 131, 231-242.
  • Bentz, E. C., Massam, L., & Collins, M. P. (2010). Shear strength of large concrete members with FRP reinforcement. Journal of Composites for Construction, 14(6), 637-646.
  • BISE (British Institution of Structural Engineers). (1999). “Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement.” In IStructE, 98–100. London: SETO.
  • CNR-DT.203, (2007). Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars, in (Advisory Committee on Technical Recommendations for Construction).
  • CSA (Canadian Standards Association). (2012). Design and construction of building structures with fibre-reinforced polymers. CSA S806-12. Mississauga, ON, Canada: CSA.
  • El Zareef, M. A., Elbisy, M. S., & Badawi, M. (2021). Evaluation of code provisions predicting the concrete shear strength of FRP-reinforced members without shear reinforcement. Composite Structures, 275, 114430.
  • Elghandour, B., Eltahawy, R., Shedid, M., & Abdelrahman, A. (2023). Prediction of shear strength for CFRP reinforced concrete beams without stirrups. Engineering Structures, 284, 115946.
  • El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Materials Journal, 103(3), 383.
  • El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear strength of FRP-reinforced concrete beams without transverse reinforcement. ACI Materials Journal, 103(2), 235.
  • El-Sayed, A., El-Salakawy, E., & Benmokrane, B. (2005). Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars. Journal of Composites for Construction, 9(2), 147-157.
  • Gross, S. P., Yost, J. R., Dinehart, D. W., Svensen, E., & Liu, N. (2003). Shear strength of normal and high strength concrete beams reinforced with GFRP bars. In High performance materials in bridges (pp. 426-437).
  • ISIS (Intelligent Sensing for Innovative Structures). (2007). Reinforced concrete structures with fibre-reinforced polymers. Design Manual No. 3. Winnipeg, MB, Canada: Canadian Network of Centres of Excellence.
  • Issa, M. A., Ovitigala, T., & Ibrahim, M. (2016). Shear behavior of basalt fiber reinforced concrete beams with and without basalt FRP stirrups. Journal of Composites for Construction, 20(4), 04015083.
  • JSCE (Japanese Society of Civil Engineering). (1997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Tokyo: JSCE.
  • Jumaa, G. B., & Yousif, A. R. (2019). Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Construction and Building Materials, 209, 77-94.
  • Kara, I. F. (2011). Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming. Advances in Engineering Software, 42(6), 295-304.
  • Kaszubska, M., Kotynia, R., & Barros, J. A. (2017). Influence of longitudinal GFRP reinforcement ratio on shear capacity of concrete beams without stirrups. Procedia engineering, 193, 361-368.
  • Kocaoz, S., Samaranayake, V. A., & Nanni, A. (2005). Tensile characterization of glass FRP bars. Composites Part B: Engineering, 36(2), 127-134.
  • Matta, F., El-Sayed, A. K., Nanni, A., & Benmokrane, B. (2013). Size Effect on Concrete Shear Strength in Beams Reinforced with Fiber-Reinforced Polymer Bars. ACI Structural Journal, 110(4).
  • Nehdi, M., El Chabib, H., & Saïd, A. A. (2007). Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. Journal of materials in civil engineering, 19(12), 1033-1042.
  • Park, H. G., & Choi, K. K. (2017). Unified shear design method of concrete beams based on compression zone failure mechanism. Concrete International, 39(9), 59-63.
  • Razaqpur, A. G., & Isgor, O. B. (2006). Proposed shear design method for FRP-reinforced concrete members without stirrups. ACI Structural Journal, 103(1), 93.
  • Tariq, M., & Newhook, J. P. (2003, June). Shear testing of FRP reinforced concrete without transverse reinforcement. In Proceedings, Annual Conference of the Canadian Society for Civil Engineering (pp. 1330-1339).
  • Tomlinson, D., & Fam, A. (2015). Performance of concrete beams reinforced with basalt FRP for flexure and shear. Journal of composites for construction, 19(2), 04014036.
  • Tureyen, A. K., & Frosch, R. J. (2002). Shear tests of FRP-reinforced concrete beams without stirrups. Structural Journal, 99(4), 427-434.
  • Tureyen, A. K., & Frosch, R. J. (2003). Concrete shear strength: Another perspective. Structural Journal, 100(5), 609-615.
  • Yost, J. R., Gross, S. P., & Dinehart, D. W. (2001). Shear strength of normal strength concrete beams reinforced with deformed GFRP bars. Journal of composites for construction, 5(4), 268-275.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Betonarme Yapılar
Bölüm Makaleler
Yazarlar

Saruhan Kartal 0000-0002-1870-3287

Yayımlanma Tarihi 31 Ocak 2024
Gönderilme Tarihi 14 Aralık 2023
Kabul Tarihi 12 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 16 Sayı: 1

Kaynak Göster

APA Kartal, S. (2024). Etriyesiz FRP Boyuna Donatılı Betonarme Kirişlerin (a/d>2.5) Kesme Davranışları. International Journal of Engineering Research and Development, 16(1), 416-431. https://doi.org/10.29137/umagd.1404776
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.