Year 2017, Volume 38, Issue 3, Pages 419 - 426 2017-09-30

Aster Uydu Görüntüleri ile Hidrotermal Alterasyon Alanlarının Belirlenmesi: Ağmaşat Yaylası-Zara (Sivas) / Türkiye Örneği
Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample

Oktay CANBAZ [1] , Önder GÜRSOY [2] , Ahmet GÖKCE [3]

291 343

Hidrotermal alterasyon alanlarının tespiti, maden arama faaliyetlerinin ilk aşamalarından bir tanesi olup özellikle porfiri tip zenginleşmelerin keşfinde önemli bir adımı oluşturmaktadır.  Önceleri arazi çalışmaları ve gözlemlerle tespit edilebilen bu tür alanlar artık günümüzde gelişen teknoloji ile birlikte uydulardan elde edilen görüntüler üzerinde yapılan işlemlerle tespit edilebilmektedir. Bu çalışmada Sivas ilinin Zara ilçesinin kuzeyinde Ağmaşat Yaylası'nda belirlenen hidrotermal alterasyon alanlarının ve çevre jeolojik birimlerinin sınırları ASTER uydusu SWIR görüntüleri ile belirlenmeye çalışılmıştır. Uygulanan dekorelasyon gerilmesi ve ana bileşenler dönüşümü metodları ile elde edilen veriler, arazi çalışmaları sırasında hazırlanan jeoloji haritası ile yüksek oranda örtüştüğü belirlenmiştir. Bu veriler ışığında tespit edilebilecek yeni alterasyon alanları potansiyel maden sahası olarak değerlendirilebilecektir. 

Determination of hydrothermal alteration areas is one of the first stage methodes used in mineral exploration studies, particularly of porphyry type mineralizations. These studies were only possible by field investigations in the past, but now, they can be easily detected with images from satellites, in accordance with the developing technology. In this study, contacts between geological units and the border of the hydrothermal alteration zones were determined with SWIR images of ASTER in Ağmaşat Plato, located in the north of Zara district of Sivas province. Decorrelation stretching and principal component analysis were carried out on the SWIR images. The obtained results highly coincide with the geological map which was prepared during the field studies. These results will lead to the discovery of new potential fields.

  • [1]. Rowan, L. C., Schmidt, R. G., Mars, J. C., 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, 74–87.
  • [2]. Bedini, E., Van Der Meer, F., Van, F., 2009. Ruitenbeek Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int. J. Remote. Sens., 30 (2), 327–348.
  • [3]. Gabr, S., Ghulam, A., Kusky, T., 2010. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev., 38, 59–69.
  • [4]. Pour, B.A., Hashim, M., Marghany, M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int. J. Phys. Sci., 6 (4), 917–929.
  • [5]. Hunt, G.R.,1977. Spectral signatures of particulate minerals in the visible and near infrared Geophysics, 42, 501–513.
  • [6]. Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. Int. J. Remote. Sens., 21, 847–859.
  • [7]. Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami,T., Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071.
  • [8]. Abrams, M., Hook, S.J., 1995. Simulated ASTER data for geologic studies IEEE Trans. Geosci. Remote. Sens., 33 (3), 1995.
  • [9]. Fujisada, H., 1995. Design and performance of ASTER instrument. Proceedings of SPIE, 2583, 16–25.
  • [10]. Crosta, A., De Souza Filho, C., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote sensing, 24 (21), 4233–4240.
  • [11]. Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina Ore Geol. Rev., 32, 275–290.
  • [12]. Ducart, D.F., Crosta, A.P., Filio, C.R.S., 2006. Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: field mapping, short-wave infrared spectroscopy, and ASTER images. Econ. Geol., 101, 981–996.
  • [13]. Rowan, L., Hook, S.J., Abrams, M.J., Mars, J.C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology and the Bulletin of the Society of Economic Geologists 98 (5), 1019–1027.
  • [14]. Rowan, L.C., Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.
  • [15]. Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordar, NT, Australia, ultramafic complex by using Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) data. Remote Sensing of Environment, 99, 105–126.
  • [16]. Bedell, R.L., 2001. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication, Geo. Soc. of Nevada, 33, 329–334.
  • [17]. Ninomiya,Y., FU, B., 2003. Extracting lithological information from ASTER multispectral thermal infrared data in the northeastern Pamirs. Xinjiang Geology, 21, 22-30.
  • [18]. Rockwell, B.W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data implications for geologic mapping and mineral resource investigations in well-studied and frontier areas Geosphere, 4 (1), 218-246.
  • [19]. Efe, A., Gökce, A., 1999. Geology and fluid inclusion studies of the Maden Village (İmranlı-Sivas) Pb-Zn deposits. Bulletin of faculty of engineering of Cumhuriyet University, Serie S- Earth Sciences, 16, 29-38
  • [20]. Boztuğ, D., 2008. Petrogenesis of the Kosedag Pluton, Susehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Science, 17(2), 241-262.
  • [21]. Okay, A., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156, 475-515.
  • [22]. Eyuboglu, Y., 2010. Late Cretaceous high-K volcanism in the eastern Pontides orogenic belt, and its implications for the geodynamic evolution of NE Turkey. International Geology Review 52 (2–3), 142–186.
  • [23]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011c. Crystal fractionation of adakitic magmas in the crust-mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, Eastern Pontides, NE Turkey. Lithos 121, 151–166. [24]. Eyuboglu, Y., Chung, S.L., Santosh, M., Dudas, F.O., Akaryali, E., 2011a. Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Research 19, 413–429.
  • [25]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Chung, S.L., Akaryali, E., 2011b. Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics 52, 2–15.
  • [26]. Eyuboglu, Y., Santosh, M., Bektaş, O., Ayhan, S., 2011d. Arc magmatism as a window to plate kinematics and subduction polarity: example from the Eastern Pontides belt, NE Turkey. Geoscience Frontiers 2 (1), 49–56.
  • [27]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011e. Petrochemistry and U–Pb ages of adakitic intrusions from the Pulur massif (Eastern Pontides, NE Turkey): ımplications for slab roll-back and ridge subduction associated with Cenozoic convergent tectonics in eastern Mediterranean. Journal of Geology 119, 394–417.
  • [28]. Eyuboglu, Y., Santosh, M., Yi, K., Bektaş, O., Kwon, S., 2013a. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt and revised geodynamic model for the late Cenozoic Evolution of eastern Mediterranean region. Lithos 146–147, 218-232.
  • [29]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K., Bektas, O.,2013b. The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: a synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 353-375.
  • [30]. Başıbüyük, Z., 2006. Hydrothermal alteration mineralogy-petrography and geochemistry of Eocene volcanics: an example from quadrangle of Zara-İmranlı-Suşehri-Şerefiye (Northeast of Sivas, Central Eastern Anatolia, Turkey). PhD thesis, Sivas-Turkey, Cumhuriyet University, Institute of Science, 269pp.
  • [31]. Iwasakı, A, Tonooka, H, 2005. Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. IEEE Transactions on Geoscience and Remote Sensing, 43, 2747-2751.
  • [32]. Gürsoy, Ö and Kaya, Ş., 2016. Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image, Journal of the Indian Society of Remote Sensing, doi 10.1007/s12524-016-0586-1
  • [33]. Gillespie, A. R., Kahle, A. B., Walker, R. E. 1986. Color enhancement of highly correlated images: I. Decorrelation and HIS contrast stretches. Remote Sensing of Environment, 20, 209-235.
  • [34]. Gürsoy, Ö., Kaya, Ş., Çakir, Z., Tatar, O., Canbaz, O. 2017. Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using spectral classification of satellite images and field measurements, Geomatics, Natural Hazards and Risk 10.1080/19475705.2017.1318794
Subjects Basic Sciences
Journal Section Articles
Authors

Author: Oktay CANBAZ
Country: Turkey


Author: Önder GÜRSOY

Author: Ahmet GÖKCE

Bibtex @research article { csj340473, journal = {Cumhuriyet Science Journal}, issn = {2587-2680}, eissn = {2587-246X}, address = {Cumhuriyet University}, year = {2017}, volume = {38}, pages = {419 - 426}, doi = {10.17776/csj.340473}, title = {Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample}, key = {cite}, author = {CANBAZ, Oktay and GÜRSOY, Önder and GÖKCE, Ahmet} }
APA CANBAZ, O , GÜRSOY, Ö , GÖKCE, A . (2017). Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample. Cumhuriyet Science Journal, 38 (3), 419-426. DOI: 10.17776/csj.340473
MLA CANBAZ, O , GÜRSOY, Ö , GÖKCE, A . "Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample". Cumhuriyet Science Journal 38 (2017): 419-426 <http://dergipark.org.tr/csj/issue/31252/340473>
Chicago CANBAZ, O , GÜRSOY, Ö , GÖKCE, A . "Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample". Cumhuriyet Science Journal 38 (2017): 419-426
RIS TY - JOUR T1 - Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample AU - Oktay CANBAZ , Önder GÜRSOY , Ahmet GÖKCE Y1 - 2017 PY - 2017 N1 - doi: 10.17776/csj.340473 DO - 10.17776/csj.340473 T2 - Cumhuriyet Science Journal JF - Journal JO - JOR SP - 419 EP - 426 VL - 38 IS - 3 SN - 2587-2680-2587-246X M3 - doi: 10.17776/csj.340473 UR - https://doi.org/10.17776/csj.340473 Y2 - 2017 ER -
EndNote %0 Cumhuriyet Science Journal Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample %A Oktay CANBAZ , Önder GÜRSOY , Ahmet GÖKCE %T Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample %D 2017 %J Cumhuriyet Science Journal %P 2587-2680-2587-246X %V 38 %N 3 %R doi: 10.17776/csj.340473 %U 10.17776/csj.340473
ISNAD CANBAZ, Oktay , GÜRSOY, Önder , GÖKCE, Ahmet . "Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample". Cumhuriyet Science Journal 38 / 3 (September 2017): 419-426. https://doi.org/10.17776/csj.340473