Fuzzifying pseudo-quasi-metric topologies on the fuzzy real line
Year 2024,
Volume: 53 Issue: 2, 457 - 470, 23.04.2024
Fu-gui Shi
Abstract
In this paper, three natural fuzzifying topologies are presented on the fuzzy real line. Then the notion of fuzzifying pseudo-quasi-metrics is introduced. It is proved that the three fuzzifying topologies can be induced respectively by three fuzzifying pseudo-quasi-metrics. Our definition of fuzzifying pseudo-metric is slightly different from that of KM-fuzzy metric. A fuzzifying pseudo-metrics can be regarded as a weak form of a KM fuzzy metric.
Project Number
This project was supported by the National Natural Science Foundation of China (11871097).
References
-
[1] K. Bekar, Metric on $L$-fuzzy real line, International J. Math. Combin. 3, 48–60, 2022.
-
[2] T.E. Gantner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological
spaces, J. Math. Anal. Appl. 62, 547–562, 1978.
-
[3] R. Goetschel and W. Voxman, Topological properties of fuzzy numbers, Fuzzy Sets
Syst. 10, 87–99, 1983.
-
[4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27, 385–389, 1988.
-
[5] U. Höhle, Probabilistsche Metriken auf der Menge nicht negativen verteilungs funktionen,
Aequationes Math. 18, 345–356, 1978.
-
[6] H.-L. Huang and F.-G. Shi, $L$-fuzzy numbers and their properties, Inform. Sci. 178,
1141–1151, 2008.
-
[7] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50, 74–79,
1975.
-
[8] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica,
11, 326–334, 1975.
-
[9] Y.-M. Liu and M.-K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
-
[10] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, 314–334,
1960.
-
[11] F.-G. Shi, Pointwise uniformities in fuzzy set theory, Fuzzy Sets Syst. 98, 141–146,
1998.
-
[12] F.-G. Shi, Pointwise metrics in fuzzy set theory, Fuzzy Sets Syst. 121, 209–216, 2001.
-
[13] F.-G. Shi, Pointwise pseudo-metric on the $L$-real line, Iranian J. Fuzzy Syst. 2, 15–20,
2005.
-
[14] F.-G. Shi, C.-Y. Zheng, Metrization theorems in $L$-topological spaces, Fuzzy Sets Syst.
149, 455–471, 2005.
-
[15] F.-G. Shi, A new approach to $L$-$T_2$, $L$-Urysohn, and L-completely Hausdorff axioms,
Fuzzy Sets Syst. 157, 794–803, 2006.
-
[16] F.-G. Shi, $(L,M)$-fuzzy metric spaces, Indian J. Math. 52, 231–250, 2010.
-
[17] F.-G. Shi and Z.-Y. Xiu, A new approach to the fuzzification of convex spaces, J.
Appl. Math. 2014, 249183, 2014.
-
[18] F.-G. Shi and Z.-Y. Xiu, $(L,M)$-fuzzy convex structures, J. Nonlinear Sci. Appl. 10,
3655–3669, 2017.
-
[19] F.-G. Shi, L-metric on the space of $L$-fuzzy numbers, Fuzzy Sets Syst. 399, 95–109,
2020.
-
[20] M. S. Ying, Fuzzifying topology based on complete residuated lattice-valued logic (I),
Fuzzy Sets Syst. 56, 337–373, 1993.
-
[21] D. Zhang, A natural topology for fuzzy numbers, J. Math. Anal. Appl. 264, 344–353,
2001.
Year 2024,
Volume: 53 Issue: 2, 457 - 470, 23.04.2024
Fu-gui Shi
Project Number
This project was supported by the National Natural Science Foundation of China (11871097).
References
-
[1] K. Bekar, Metric on $L$-fuzzy real line, International J. Math. Combin. 3, 48–60, 2022.
-
[2] T.E. Gantner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological
spaces, J. Math. Anal. Appl. 62, 547–562, 1978.
-
[3] R. Goetschel and W. Voxman, Topological properties of fuzzy numbers, Fuzzy Sets
Syst. 10, 87–99, 1983.
-
[4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27, 385–389, 1988.
-
[5] U. Höhle, Probabilistsche Metriken auf der Menge nicht negativen verteilungs funktionen,
Aequationes Math. 18, 345–356, 1978.
-
[6] H.-L. Huang and F.-G. Shi, $L$-fuzzy numbers and their properties, Inform. Sci. 178,
1141–1151, 2008.
-
[7] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50, 74–79,
1975.
-
[8] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica,
11, 326–334, 1975.
-
[9] Y.-M. Liu and M.-K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
-
[10] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, 314–334,
1960.
-
[11] F.-G. Shi, Pointwise uniformities in fuzzy set theory, Fuzzy Sets Syst. 98, 141–146,
1998.
-
[12] F.-G. Shi, Pointwise metrics in fuzzy set theory, Fuzzy Sets Syst. 121, 209–216, 2001.
-
[13] F.-G. Shi, Pointwise pseudo-metric on the $L$-real line, Iranian J. Fuzzy Syst. 2, 15–20,
2005.
-
[14] F.-G. Shi, C.-Y. Zheng, Metrization theorems in $L$-topological spaces, Fuzzy Sets Syst.
149, 455–471, 2005.
-
[15] F.-G. Shi, A new approach to $L$-$T_2$, $L$-Urysohn, and L-completely Hausdorff axioms,
Fuzzy Sets Syst. 157, 794–803, 2006.
-
[16] F.-G. Shi, $(L,M)$-fuzzy metric spaces, Indian J. Math. 52, 231–250, 2010.
-
[17] F.-G. Shi and Z.-Y. Xiu, A new approach to the fuzzification of convex spaces, J.
Appl. Math. 2014, 249183, 2014.
-
[18] F.-G. Shi and Z.-Y. Xiu, $(L,M)$-fuzzy convex structures, J. Nonlinear Sci. Appl. 10,
3655–3669, 2017.
-
[19] F.-G. Shi, L-metric on the space of $L$-fuzzy numbers, Fuzzy Sets Syst. 399, 95–109,
2020.
-
[20] M. S. Ying, Fuzzifying topology based on complete residuated lattice-valued logic (I),
Fuzzy Sets Syst. 56, 337–373, 1993.
-
[21] D. Zhang, A natural topology for fuzzy numbers, J. Math. Anal. Appl. 264, 344–353,
2001.