Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 243 - 254, 04.02.2021
https://doi.org/10.15672/hujms.605105

Abstract

References

  • [1] M. Alkan and Y. Tiras, On invertible and dense submodules, Comm. Algebra, 32 (10), 3911–3919, 2004.
  • [2] M. Alkan and Y. Tiras, On prime submodules, Rocky Mountain J. Math. 37 (3), 709–722, 2007.
  • [3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison- Wesley, London, 1969.
  • [4] A. Barnard, Multiplication modules, J. Algebra, 71 (1), 174–178, 1981.
  • [5] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
  • [6] J. Dauns, Prime submodules, J. Reine Angew. Math. 298, 156–181, 1978.
  • [7] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755– 799, 1988.
  • [8] V. Erdogdu, Multiplication modules which are distributive, J. Pure Appl. Algebra, 54, 209–213, 1988.
  • [9] J.B. Harehdashti and H.F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep. 20(70) (2), 187–200, 2018.
  • [10] T.W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
  • [11] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20 (12), 3593–3602, 1992.
  • [12] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
  • [13] M.D. Larsen and P.J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
  • [14] C.P. Lu, M-radical of submodules in modules. Math. Japonica, 34 (2), 211–219, 1989.
  • [15] C.P. Lu, Saturations of submodules, Comm. Algebra, 31 (6), 2655–2673, 2003.
  • [16] C.P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (1), 125–143, 2007.
  • [17] R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra, 19 (5), 1327–1341, 1991.
  • [18] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803– 1817, 1992.
  • [19] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a Module over a commutative ring, Comm. Algebra, 25 (1), 79–103, 1997.
  • [20] H.F. Moghimi and J.B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19, 35–48, 2016.
  • [21] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50, 223–235, 1988.
  • [22] P.F. Smith, Mappings between module lattices, Int. Electron. J. Algebra, 15, 173–195, 2014.
  • [23] P.F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Al- gebra, 16, 16–31, 2014.
  • [24] P.F. Smith, Anti-homomorphisms between module lattices, J. Commut. Algebra, 7, 567–591, 2015.

Mappings between the lattices of saturated submodules with respect to a prime ideal

Year 2021, Volume: 50 Issue: 1, 243 - 254, 04.02.2021
https://doi.org/10.15672/hujms.605105

Abstract

Let $\mathfrak{S}_p(_RM)$ be the lattice of all saturated submodules of an $R$-module $M$ with respect to a prime ideal $p$ of a commutative ring $R$. We examine the properties of the mappings $\eta:\mathfrak{S}_p(_RR)\rightarrow \mathfrak{S}_p(_RM)$ defined by $\eta(I)=S_p(IM)$ and $\theta:\mathfrak{S}_p(_RM)\rightarrow \mathfrak{S}_p(_RR)$ defined by $\theta(N)=(N:M)$, in particular considering when these mappings are lattice homomorphisms. It is proved that if $M$ is a semisimple module or a projective module, then $\eta$ is a lattice homomorphism. Also, if $M$ is a faithful multiplication $R$-module, then $\eta$ is a lattice epimorphism. In particular, if $M$ is a finitely generated faithful multiplication $R$-module, then $\eta$ is a lattice isomorphism and its inverse is $\theta$. It is shown that if $M$ is a distributive module over a semisimple ring $R$, then the lattice $\mathfrak{S}_p(_RM)$ forms a Boolean algebra and $\eta$ is a Boolean algebra homomorphism.

References

  • [1] M. Alkan and Y. Tiras, On invertible and dense submodules, Comm. Algebra, 32 (10), 3911–3919, 2004.
  • [2] M. Alkan and Y. Tiras, On prime submodules, Rocky Mountain J. Math. 37 (3), 709–722, 2007.
  • [3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison- Wesley, London, 1969.
  • [4] A. Barnard, Multiplication modules, J. Algebra, 71 (1), 174–178, 1981.
  • [5] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
  • [6] J. Dauns, Prime submodules, J. Reine Angew. Math. 298, 156–181, 1978.
  • [7] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755– 799, 1988.
  • [8] V. Erdogdu, Multiplication modules which are distributive, J. Pure Appl. Algebra, 54, 209–213, 1988.
  • [9] J.B. Harehdashti and H.F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep. 20(70) (2), 187–200, 2018.
  • [10] T.W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
  • [11] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20 (12), 3593–3602, 1992.
  • [12] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
  • [13] M.D. Larsen and P.J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
  • [14] C.P. Lu, M-radical of submodules in modules. Math. Japonica, 34 (2), 211–219, 1989.
  • [15] C.P. Lu, Saturations of submodules, Comm. Algebra, 31 (6), 2655–2673, 2003.
  • [16] C.P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (1), 125–143, 2007.
  • [17] R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra, 19 (5), 1327–1341, 1991.
  • [18] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803– 1817, 1992.
  • [19] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a Module over a commutative ring, Comm. Algebra, 25 (1), 79–103, 1997.
  • [20] H.F. Moghimi and J.B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19, 35–48, 2016.
  • [21] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50, 223–235, 1988.
  • [22] P.F. Smith, Mappings between module lattices, Int. Electron. J. Algebra, 15, 173–195, 2014.
  • [23] P.F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Al- gebra, 16, 16–31, 2014.
  • [24] P.F. Smith, Anti-homomorphisms between module lattices, J. Commut. Algebra, 7, 567–591, 2015.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Morteza Noferesti This is me 0000-0002-6284-5485

Hosein Fazaeli Moghimi 0000-0002-5091-6098

Mohammad Hossein Hosseini This is me 0000-0001-6192-5187

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Noferesti, M., Fazaeli Moghimi, H., & Hosseini, M. H. (2021). Mappings between the lattices of saturated submodules with respect to a prime ideal. Hacettepe Journal of Mathematics and Statistics, 50(1), 243-254. https://doi.org/10.15672/hujms.605105
AMA Noferesti M, Fazaeli Moghimi H, Hosseini MH. Mappings between the lattices of saturated submodules with respect to a prime ideal. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):243-254. doi:10.15672/hujms.605105
Chicago Noferesti, Morteza, Hosein Fazaeli Moghimi, and Mohammad Hossein Hosseini. “Mappings Between the Lattices of Saturated Submodules With Respect to a Prime Ideal”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 243-54. https://doi.org/10.15672/hujms.605105.
EndNote Noferesti M, Fazaeli Moghimi H, Hosseini MH (February 1, 2021) Mappings between the lattices of saturated submodules with respect to a prime ideal. Hacettepe Journal of Mathematics and Statistics 50 1 243–254.
IEEE M. Noferesti, H. Fazaeli Moghimi, and M. H. Hosseini, “Mappings between the lattices of saturated submodules with respect to a prime ideal”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 243–254, 2021, doi: 10.15672/hujms.605105.
ISNAD Noferesti, Morteza et al. “Mappings Between the Lattices of Saturated Submodules With Respect to a Prime Ideal”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 243-254. https://doi.org/10.15672/hujms.605105.
JAMA Noferesti M, Fazaeli Moghimi H, Hosseini MH. Mappings between the lattices of saturated submodules with respect to a prime ideal. Hacettepe Journal of Mathematics and Statistics. 2021;50:243–254.
MLA Noferesti, Morteza et al. “Mappings Between the Lattices of Saturated Submodules With Respect to a Prime Ideal”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 243-54, doi:10.15672/hujms.605105.
Vancouver Noferesti M, Fazaeli Moghimi H, Hosseini MH. Mappings between the lattices of saturated submodules with respect to a prime ideal. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):243-54.