Research Article
BibTex RIS Cite

Effects of Nisin and Organic Acid on Salmonella enteritidis Colonization in Poultry Feeds at Different Storage Time

Year 2021, Volume: 62 Issue: 1, 1 - 6, 30.06.2021
https://doi.org/10.29185/hayuretim.745800

Abstract

This study was conducted to investigate the inhibitory effects of nisin alone or in combination with organic acid on Salmonella enteritidis in poultry feed at different storage times. Feeds divided into six experimental groups that consist of control, 150 mg/kg nisin (N150), 300 mg/kg nisin (N300), 3 g/kg organic acid (OA), 150 mg/kg nisin + 3 g/kg organic acid (N150+OA), 300 mg/kg nisin + 3 g/kg organic acid (N300+OA). Then, 104 cfu/ml Salmonella enteritidis cultures added in the feeds. Feeds were stored in room temperature and Salmonella colonies were enumerated at 7th, 15th, 21st and 28th days of the study. At the end of the study, it was observed inhibitory effects of nisin that alone or in combined with organic acid on Salmonella enteritidis in feeds. These results indicated that nisin has the potential to control of Salmonella enteritidis contamination in feed at different storage times.

References

  • Abd El-Ghany W, Tony MA and Mohamed S. 2015. Influence of feed sanitation on zootechnical performance, prevalence, immune status and carcass trait of Salmonella typhimurium infected broiler chickens. Asian Journal of Animal Sciences 9(6): 306-317.
  • Ahmad V, Khan, MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. 2017. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49: 1-11.
  • Al-Natour MQ and Alshawabkeh KM. 2005. Using varying levels of formic acid to limit growth of Salmonella gallinarum in contaminated broiler feed. Asian-Australasian Journal of Animal Science 18(3) : 390-395.
  • Andino A, Pendleton S, Zhang N, Chen, W, Critzer, F, and Hanning I. 2014. Survival of Salmonella enterica in poultry feed is strain dependent. Poultry Science 93: 441-447.
  • Ashari DA, Nissa A, Nursiwi A, Sair AM, Utami R. 2019. Antimicrobial effect of Zingiber officinale var. officinale essential oil and nisin against pathogenic and spoilage microorganisms. IOP Conf. Series: Materials Science and Engineering 633 (2019) 012005. doi:10.1088/1757-899X/633/1/012005.
  • Axmann S, Kolar V, Adler A, Strnad I. 2017. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material. Food Additives & Contaminants: Part A 34(11): 1915-1924.
  • Ay Z, Tuncer Y. 2016. Combined antimicrobial effect of nisin, carvacrol and EDTA against Salmonella Typhimurium in TSBYE at 4°C and 37°C. Romanian Biotechnological Letters 21(4): 11666-11674.
  • Azhar NS, Md Zin NH, and Abdul Hamid THT. 2017. Lactococcus Lactis strain A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Tropical Life Sciences Research 28(2): 107-118.
  • Berge AC, Wierup M. 2012. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal 6(4): 557-564.
  • Bingol EB, Akkaya E, Hampikyan H, Cetin O, Colak H. 2018. Effect of nisin-EDTA combinations and modified atmosphere packaging on the survival of Salmonella enteritidis in Turkish type meatballs. CyTA - Journal of Food 16(1): 1030-1036.
  • Bourassa DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. 2018. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca. Poultry Science 97: 64-73.
  • Bryden WL. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology 173(1-2): 134-158.
  • Carrique-Mas JJ, Bedford S, Davies RH. 2007. Organic acid and formaldehyde treatment of animal feeds to control Salmonella: Efficacy and masking during culture. Journal of Applied Microbiology 103: 88-96.
  • Cegielska-Radziejewska R, Stuper K, Szablewski T. 2013. Microflora and mycotoxin contamination in poultry feed mixtures from western Poland. Annals of Agricultural and Environmental Medicine 20(1): 30-35.
  • Choi H-J, Cheigh C-I, Kim S-B, Pyun Y-R. 2000. Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. Journal of Applied Microbiology 88: 563-571.
  • Cotter PD, Ross RP, and Hill C. 2013. Bacteriocins – a viable alternative to antibiotics? Nature Reviews Microbiology 11: 95-105.
  • Davies RH, Wales AD. 2010. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology 109(4): 1430-1440.
  • El Baaboua A, El Maadoudi M, Bouyahya A, Belmehdi O, Kounnoun A, Zahli R, Abrini J. 2018. Evaluation of antimicrobial activity of four organic acids used in chicks feed to control Salmonella typhimurium: suggestion of amendment in the search standard. International Journal of Microbiology Volume 2018, Article ID 7352593, 9 pages.
  • EFSA. 2008. Microbiological risk assessment in feedingstuffs for food-producing animals scientific opinion of the panel on biological hazards. The EFSA Journal 720: 1-84.
  • FAO and IFIF. 2010. Good practices for the feed industry–Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. FAO Animal Production and Health Manual No: 9, s. 79, Rome.
  • Fernández-Pérez R, Sáenz Y, Rojo-Bezares B, Zarazaga M, Rodriguez JM, Torres C, Tenario C, Ruiz-Larrea. 2018. Production and antimicrobial activity of nisin under enological conditions. Frontiers in Microbiology 9: 1918.
  • Galvão MF, Prudêncio CV, Vanetti MCD. 2015. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. Journal of Applied Microbiology 118: 1137-1143.
  • Govaris A, Solomakos N, Pexara A, Chatzopoulou PS. 2010. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. International Journal of Food Microbiology 137: 175-180.
  • Ha SD, Maciorowski KG, Kwon YM, Jones FT, Ricke SC. 1998. Survivability of indigenous microflora and a Salmonella typhimurium marker strain in poultry mash treated with buffered propionic acid. Animal Feed Science and Technology 75: 145-155.
  • Hald T, Wingstrand A, Pires SM, Vieira A, Domingues AR, Lundsby K, Andersen VD. 2012. Assessment of the human-health impact of Salmonella in animal feed. 1st. Ed., National Food Institute, Technical University of Denmark.
  • Humphrey TJ and Lanning DG. 1988. The vertical transmission of salmonellas and formic acid treatment of chicken feed. A possible strategy for control. Epidemiology and Infection 100: 43-49.
  • Iba AM and Berchieri A. 1995. Studies on the use of a formic acid-propionic acid mixture (Bio-add) to control experimental Salmonella infection in broiler chickens. Avian Pathology 24: 303-311.
  • Jayaweera TSP, Jayasinghe JMCS, Madushanka DNN, Yasawathie DG, Ruwandeepika HAD. 2018. Assessment of the Inhibitory Effect of Nisin (E234) on Salmonella typhimurium and Bacillus subtilis in Chicken Sausage. Asian Food Science Journal 2(3): 1-11.
  • Jones FT. 2011. A review of practical Salmonella control measures in animal feed. The Journal of Applied Poultry Research 20: 102-113.
  • Khan SH and Iqbal J. 2016. Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research 44(1): 359-369.
  • Kierończyk B, Sassek M, Pruszysńka-Oszmałek E, Kołodziejski P, Rawski M, Światkiewicz S, Józefiak D. 2017. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poultry Science 96: 4026-4037.
  • Koyuncu S, Andersson MG, Löfström C, Skandamis PN, Gounadaki A, Zentek J, Häggblom P. 2013. Organic acids for control of Salmonella indifferent feed materials. BMC Veterinary Research 9: 81.
  • Kukier E, Goldsztejn M, Grenda T, Kwiatek K, Bocian Ł. 2013. Microbiological Quality of Feed Materials Used Between 2009 and 2012 in Poland. Bulletin of the Veterinary Institute in Pulawy 57: 535-543.
  • Lagha AB, Haas B, Gottschalk M, Grenier D. 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research 48: 22. Doi: 10.1186/s13567-017-0425-6.
  • Maciorowski KG, Herrera P, Kundinge MM and Ricke SC. 2006. Animal feed production and contamination by foodborne Salmonella. Journal für Verbraucherschutz und Lebensmittelsicherheit 1: 197-209.
  • Maciorowski KG, Herrera P, Jones FT, Pillai SD, Ricke SC. 2007. Effects on poultry and livestock of feed contamination with bacteria and fungi. Animal Feed Science and Technology 133(1-2): 109-136.
  • Matlho G, Himathongkham S, Riemann H and Kass P. 1997. Destruction of Salmonella enteritidis in poultry feed by combination of heat and propionic acid. Avian Diseases 41(1): 58-61.
  • Mills S, Ross RP, Hill C. 2017. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews 41(Supp 1): S129-S153.
  • Ndoti-Nembe A, Vu KD, Han J, Doucet N, Lacroix M. 2015. Antimicrobial effects of nisin, essential oil, and γ -irradiation treatments against high load of Salmonella typhimurium on mini-carrots. Journal of Food Science 80(7): M1544- M1548.
  • Nissa A, Utami R, Sari AM, Nursuwi A. 2018. Combination effect of nisin and red ginger essential oil (Zingiber officinale var. rubrum) against foodborne pathogens and food spoilage microorganisms. International Conference on Science and Applied Science 020023-1–020023-6.
  • Pinilla CMB, Brandelli A. 2016. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies 36: 287-293.
  • Phongphakdee K, Nitisinpraset S. 2015. Combination inhibition activity of nisin and ethanol on the growth inhibition of pathogenic gram negative bacteria and their application as disinfectant solution. Journal of Food Science 80(10): M2241-M2246.
  • Rattanachaikunsopon P, Phumkhachorn P. 2010. Synergistic antimicrobial effect of nisin and ρ-cymene on Salmonella enterica serovar typhi in vitro and on ready-to-eat food. Bioscience, Biotechnology, and Biochemistry 74(3): 520-524.
  • Rouse J, Rolow A, Nelson CE. 1988. Research note: effect of chemical treatment of poultry feed on survival of Salmonella. Poultry Science 67: 1225-1228.
  • Sangcharoen N, Klaypradit W, Wilaipun P. 2017. Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA) against Salmonella Enteritidis ATCC 13076 using response surface methodology. Agriculture and Natural Science 51: 355-364.
  • Sapkota AR, Lefferts LY, McKenzie S, Walker P. 2007. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environmental Health Perspectives 115(5): 663-670.
  • SAS 1999. The SAS System SAS Institute Inc., Cary, NC, USA, Version 8 Copyright © 1999.
  • Sauli I, Danuser J, Geeraerd AH, Van Impe JF, Rüfenacht J, Bissig-Choisat B, Wenk C, Stärk KDC. 2005. Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland-the impact of the production pathway. International Journal of Food Microbiology 100(1-3): 289-310.
  • Selim SA, El Alfy SM, Abdel Aziz MH, Mashait MS, Warrad MF. 2012. Evolution of bactericidal activity of selected food additives against food borne microbial pathogens. Biosciences Biotechnology Research Asia 9(1): 7-17.
  • Shahbazi Y. 2016. The antibacterial effect of Ziziphora clinopodioides essential oil and nisin against Salmonella typhimurium and Staphylococcus aureus in doogh, a yoghurt-based Iranian drink. Veterinary Research Forum 7(3): 213-219.
  • Silva JPL, Souza EF, Modesta RCD, Gomes IA, Freitas-Silva O, Franco BDGM. 2016. Antibacterial activity of nisin, oregano essential oil, EDTA, and their combination against Salmonella Enteritidis for application in mayonnaise. Vigilância sanitária em debate 4(1): 83-91.
  • Todorov SD, Dicks LMT. 2005. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology 36: 318-326.
  • Torres GJ, Piquer FJ, Algarra L, Frutos C, Sobrino OJ. 2011. The prevalence of Salmonella enterica in Spanish feed mills and potential feed-related risk factors for contamination. Preventive Veterinary Medicine 98(2-3): 81-87.
  • Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R. 2009. Strategies to control Salmonella in the broiler production chain. World’s Poultry Science Journal 65(3): 367-392.
  • Veldman A, Vahl HA, Borggreve GJ and Fuller DC. 1995. A survey of the incidence of Salmonella species and Enterobacteriaceae in poultry feeds and feed components. Veterinary Record 136: 169-172.
  • Vu THA, Huu NN, Ly HD, Tu NHK. 2016. Detection of Salmonella Spp. in feed and their antibiotic susceptibility for alternative therapy. Journal of Applied Pharmaceutical Science 6(5): 18-21.
  • Vukmirović DM, Rakita SM, Spasevski NJ, Kokić BM, Banjac VV, Čabarkapa IS. 2017. A review of possibilities for control of Salmonella and other pathogenic bacteria in pig feed. Food and Feed Research 44(2): 151-162.
  • Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2014.00241.

Farklı Depolama Zamanlarında Kanatlı Yemlerindeki Salmonella enteritidis Kolonizasyonu Üzerine Nisin ve Organik Asitin Etkileri

Year 2021, Volume: 62 Issue: 1, 1 - 6, 30.06.2021
https://doi.org/10.29185/hayuretim.745800

Abstract

Bu çalışma, farklı depolama sürelerinde kanatlı hayvan yemlerinde tek başına veya organik asit ile kombinasyon halinde nisinin Salmonella enteritidis üzerine önleyici etkilerini araştırmak için yapılmıştır. Yemler; kontrol, 150 mg/kg nisin (N150), 300 mg/kg nisin (N300), 3 g/kg organik asit (OA), 150 mg/kg nisin + 3 g/kg organik asit (N150+OA), 300 mg/kg nisin + 3 g/kg organik asit (N300+OA) ten oluşan 6 deneme grubuna ayrılmıştır. Daha sonra yemlere 104 cfu/ml Salmonella enteritidis kültürü eklenmiştir. Yemler oda sıcaklığında muhafaza edilmiş ve denemenin 7, 15, 21 ve 28. günlerinde Salmonella sayımı yapılmıştır. Denemenin sonunda, nisinin tek başına veya organik asit ile birlikte yemlerdeki Salmonella enteritidis üzerine inhibitör etkileri gözlenmiştir. Bu sonuçlar, nisinin farklı depolama zamanlarında yemdeki Salmonella kontaminasyonunu kontrol etme potansiyeline sahip olduğunu göstermiştir.

References

  • Abd El-Ghany W, Tony MA and Mohamed S. 2015. Influence of feed sanitation on zootechnical performance, prevalence, immune status and carcass trait of Salmonella typhimurium infected broiler chickens. Asian Journal of Animal Sciences 9(6): 306-317.
  • Ahmad V, Khan, MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. 2017. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49: 1-11.
  • Al-Natour MQ and Alshawabkeh KM. 2005. Using varying levels of formic acid to limit growth of Salmonella gallinarum in contaminated broiler feed. Asian-Australasian Journal of Animal Science 18(3) : 390-395.
  • Andino A, Pendleton S, Zhang N, Chen, W, Critzer, F, and Hanning I. 2014. Survival of Salmonella enterica in poultry feed is strain dependent. Poultry Science 93: 441-447.
  • Ashari DA, Nissa A, Nursiwi A, Sair AM, Utami R. 2019. Antimicrobial effect of Zingiber officinale var. officinale essential oil and nisin against pathogenic and spoilage microorganisms. IOP Conf. Series: Materials Science and Engineering 633 (2019) 012005. doi:10.1088/1757-899X/633/1/012005.
  • Axmann S, Kolar V, Adler A, Strnad I. 2017. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material. Food Additives & Contaminants: Part A 34(11): 1915-1924.
  • Ay Z, Tuncer Y. 2016. Combined antimicrobial effect of nisin, carvacrol and EDTA against Salmonella Typhimurium in TSBYE at 4°C and 37°C. Romanian Biotechnological Letters 21(4): 11666-11674.
  • Azhar NS, Md Zin NH, and Abdul Hamid THT. 2017. Lactococcus Lactis strain A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Tropical Life Sciences Research 28(2): 107-118.
  • Berge AC, Wierup M. 2012. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal 6(4): 557-564.
  • Bingol EB, Akkaya E, Hampikyan H, Cetin O, Colak H. 2018. Effect of nisin-EDTA combinations and modified atmosphere packaging on the survival of Salmonella enteritidis in Turkish type meatballs. CyTA - Journal of Food 16(1): 1030-1036.
  • Bourassa DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. 2018. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca. Poultry Science 97: 64-73.
  • Bryden WL. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology 173(1-2): 134-158.
  • Carrique-Mas JJ, Bedford S, Davies RH. 2007. Organic acid and formaldehyde treatment of animal feeds to control Salmonella: Efficacy and masking during culture. Journal of Applied Microbiology 103: 88-96.
  • Cegielska-Radziejewska R, Stuper K, Szablewski T. 2013. Microflora and mycotoxin contamination in poultry feed mixtures from western Poland. Annals of Agricultural and Environmental Medicine 20(1): 30-35.
  • Choi H-J, Cheigh C-I, Kim S-B, Pyun Y-R. 2000. Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. Journal of Applied Microbiology 88: 563-571.
  • Cotter PD, Ross RP, and Hill C. 2013. Bacteriocins – a viable alternative to antibiotics? Nature Reviews Microbiology 11: 95-105.
  • Davies RH, Wales AD. 2010. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology 109(4): 1430-1440.
  • El Baaboua A, El Maadoudi M, Bouyahya A, Belmehdi O, Kounnoun A, Zahli R, Abrini J. 2018. Evaluation of antimicrobial activity of four organic acids used in chicks feed to control Salmonella typhimurium: suggestion of amendment in the search standard. International Journal of Microbiology Volume 2018, Article ID 7352593, 9 pages.
  • EFSA. 2008. Microbiological risk assessment in feedingstuffs for food-producing animals scientific opinion of the panel on biological hazards. The EFSA Journal 720: 1-84.
  • FAO and IFIF. 2010. Good practices for the feed industry–Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. FAO Animal Production and Health Manual No: 9, s. 79, Rome.
  • Fernández-Pérez R, Sáenz Y, Rojo-Bezares B, Zarazaga M, Rodriguez JM, Torres C, Tenario C, Ruiz-Larrea. 2018. Production and antimicrobial activity of nisin under enological conditions. Frontiers in Microbiology 9: 1918.
  • Galvão MF, Prudêncio CV, Vanetti MCD. 2015. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. Journal of Applied Microbiology 118: 1137-1143.
  • Govaris A, Solomakos N, Pexara A, Chatzopoulou PS. 2010. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. International Journal of Food Microbiology 137: 175-180.
  • Ha SD, Maciorowski KG, Kwon YM, Jones FT, Ricke SC. 1998. Survivability of indigenous microflora and a Salmonella typhimurium marker strain in poultry mash treated with buffered propionic acid. Animal Feed Science and Technology 75: 145-155.
  • Hald T, Wingstrand A, Pires SM, Vieira A, Domingues AR, Lundsby K, Andersen VD. 2012. Assessment of the human-health impact of Salmonella in animal feed. 1st. Ed., National Food Institute, Technical University of Denmark.
  • Humphrey TJ and Lanning DG. 1988. The vertical transmission of salmonellas and formic acid treatment of chicken feed. A possible strategy for control. Epidemiology and Infection 100: 43-49.
  • Iba AM and Berchieri A. 1995. Studies on the use of a formic acid-propionic acid mixture (Bio-add) to control experimental Salmonella infection in broiler chickens. Avian Pathology 24: 303-311.
  • Jayaweera TSP, Jayasinghe JMCS, Madushanka DNN, Yasawathie DG, Ruwandeepika HAD. 2018. Assessment of the Inhibitory Effect of Nisin (E234) on Salmonella typhimurium and Bacillus subtilis in Chicken Sausage. Asian Food Science Journal 2(3): 1-11.
  • Jones FT. 2011. A review of practical Salmonella control measures in animal feed. The Journal of Applied Poultry Research 20: 102-113.
  • Khan SH and Iqbal J. 2016. Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research 44(1): 359-369.
  • Kierończyk B, Sassek M, Pruszysńka-Oszmałek E, Kołodziejski P, Rawski M, Światkiewicz S, Józefiak D. 2017. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poultry Science 96: 4026-4037.
  • Koyuncu S, Andersson MG, Löfström C, Skandamis PN, Gounadaki A, Zentek J, Häggblom P. 2013. Organic acids for control of Salmonella indifferent feed materials. BMC Veterinary Research 9: 81.
  • Kukier E, Goldsztejn M, Grenda T, Kwiatek K, Bocian Ł. 2013. Microbiological Quality of Feed Materials Used Between 2009 and 2012 in Poland. Bulletin of the Veterinary Institute in Pulawy 57: 535-543.
  • Lagha AB, Haas B, Gottschalk M, Grenier D. 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research 48: 22. Doi: 10.1186/s13567-017-0425-6.
  • Maciorowski KG, Herrera P, Kundinge MM and Ricke SC. 2006. Animal feed production and contamination by foodborne Salmonella. Journal für Verbraucherschutz und Lebensmittelsicherheit 1: 197-209.
  • Maciorowski KG, Herrera P, Jones FT, Pillai SD, Ricke SC. 2007. Effects on poultry and livestock of feed contamination with bacteria and fungi. Animal Feed Science and Technology 133(1-2): 109-136.
  • Matlho G, Himathongkham S, Riemann H and Kass P. 1997. Destruction of Salmonella enteritidis in poultry feed by combination of heat and propionic acid. Avian Diseases 41(1): 58-61.
  • Mills S, Ross RP, Hill C. 2017. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews 41(Supp 1): S129-S153.
  • Ndoti-Nembe A, Vu KD, Han J, Doucet N, Lacroix M. 2015. Antimicrobial effects of nisin, essential oil, and γ -irradiation treatments against high load of Salmonella typhimurium on mini-carrots. Journal of Food Science 80(7): M1544- M1548.
  • Nissa A, Utami R, Sari AM, Nursuwi A. 2018. Combination effect of nisin and red ginger essential oil (Zingiber officinale var. rubrum) against foodborne pathogens and food spoilage microorganisms. International Conference on Science and Applied Science 020023-1–020023-6.
  • Pinilla CMB, Brandelli A. 2016. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies 36: 287-293.
  • Phongphakdee K, Nitisinpraset S. 2015. Combination inhibition activity of nisin and ethanol on the growth inhibition of pathogenic gram negative bacteria and their application as disinfectant solution. Journal of Food Science 80(10): M2241-M2246.
  • Rattanachaikunsopon P, Phumkhachorn P. 2010. Synergistic antimicrobial effect of nisin and ρ-cymene on Salmonella enterica serovar typhi in vitro and on ready-to-eat food. Bioscience, Biotechnology, and Biochemistry 74(3): 520-524.
  • Rouse J, Rolow A, Nelson CE. 1988. Research note: effect of chemical treatment of poultry feed on survival of Salmonella. Poultry Science 67: 1225-1228.
  • Sangcharoen N, Klaypradit W, Wilaipun P. 2017. Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA) against Salmonella Enteritidis ATCC 13076 using response surface methodology. Agriculture and Natural Science 51: 355-364.
  • Sapkota AR, Lefferts LY, McKenzie S, Walker P. 2007. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environmental Health Perspectives 115(5): 663-670.
  • SAS 1999. The SAS System SAS Institute Inc., Cary, NC, USA, Version 8 Copyright © 1999.
  • Sauli I, Danuser J, Geeraerd AH, Van Impe JF, Rüfenacht J, Bissig-Choisat B, Wenk C, Stärk KDC. 2005. Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland-the impact of the production pathway. International Journal of Food Microbiology 100(1-3): 289-310.
  • Selim SA, El Alfy SM, Abdel Aziz MH, Mashait MS, Warrad MF. 2012. Evolution of bactericidal activity of selected food additives against food borne microbial pathogens. Biosciences Biotechnology Research Asia 9(1): 7-17.
  • Shahbazi Y. 2016. The antibacterial effect of Ziziphora clinopodioides essential oil and nisin against Salmonella typhimurium and Staphylococcus aureus in doogh, a yoghurt-based Iranian drink. Veterinary Research Forum 7(3): 213-219.
  • Silva JPL, Souza EF, Modesta RCD, Gomes IA, Freitas-Silva O, Franco BDGM. 2016. Antibacterial activity of nisin, oregano essential oil, EDTA, and their combination against Salmonella Enteritidis for application in mayonnaise. Vigilância sanitária em debate 4(1): 83-91.
  • Todorov SD, Dicks LMT. 2005. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology 36: 318-326.
  • Torres GJ, Piquer FJ, Algarra L, Frutos C, Sobrino OJ. 2011. The prevalence of Salmonella enterica in Spanish feed mills and potential feed-related risk factors for contamination. Preventive Veterinary Medicine 98(2-3): 81-87.
  • Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R. 2009. Strategies to control Salmonella in the broiler production chain. World’s Poultry Science Journal 65(3): 367-392.
  • Veldman A, Vahl HA, Borggreve GJ and Fuller DC. 1995. A survey of the incidence of Salmonella species and Enterobacteriaceae in poultry feeds and feed components. Veterinary Record 136: 169-172.
  • Vu THA, Huu NN, Ly HD, Tu NHK. 2016. Detection of Salmonella Spp. in feed and their antibiotic susceptibility for alternative therapy. Journal of Applied Pharmaceutical Science 6(5): 18-21.
  • Vukmirović DM, Rakita SM, Spasevski NJ, Kokić BM, Banjac VV, Čabarkapa IS. 2017. A review of possibilities for control of Salmonella and other pathogenic bacteria in pig feed. Food and Feed Research 44(2): 151-162.
  • Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2014.00241.
There are 58 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ahmet Önder Üstündağ 0000-0002-4950-8927

Publication Date June 30, 2021
Submission Date June 1, 2020
Published in Issue Year 2021 Volume: 62 Issue: 1

Cite

APA Üstündağ, A. Ö. (2021). Effects of Nisin and Organic Acid on Salmonella enteritidis Colonization in Poultry Feeds at Different Storage Time. Hayvansal Üretim, 62(1), 1-6. https://doi.org/10.29185/hayuretim.745800


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

264072640626408  26409 26410  2639926411 26412 26413 26414 26415