Research Article
BibTex RIS Cite

Analysis of the Effect of Rotor Slot Type on Torque Ripple in Induction Motors by Finite Element Method

Year 2020, Volume: 7 Issue: 2, 536 - 542, 31.05.2020
https://doi.org/10.31202/ecjse.664132

Abstract

Induction motors are the most widely used motors in industry and home applications due to their robust structure, cheapness, low maintenance and high efficiency. The torque-speed characteristic, which is one of the most critical parameters of induction motors, is highly influenced by rotor slot structures. Therefore, slot type and slot sizing should be performed properly to maximize motor performance during the design process of the induction motor. Induction motors have more than 30 rotor slot types, and each of these slot types has different advantages and disadvantages. In the design stage of the induction motor, the choice of rotor slot structure as well as other parameters (external dimensions, winding structure, core material selection, etc.) is of great importance, while effects such as torque ripple, acoustic noise and mechanical vibrations should be taken into consideration topics for motor designers. In this study, the effects of torque ripple in induction motors and the changes of torque ripple in different rotor slot structures are investigated. The analyses are performed using Maxwell RMxprt program. Firstly, static motor models were created and analyzed in RMxprt program. Afterwards, 2-D models of the motors are created and analyzes are carried out to obtain torque ripple changes. 7 different slot geometries are used in rotor slot structure. Other parameters of the motor are kept constant. Rotor slot geometry with minimum torque ripple and the best performance criteria are determined from the motor models. A 90 kW, 3-phase, squirrel cage induction motor is used as the motor model.

References

  • [1] Settar, S. K.; Ahmed, N. A.; Hatem, F. F.; Mohd, R. B. D., Three Phase Induction Motor Torque Ripple Minimization based on A Novel Nonlinear Dynamic Inverse Controller, The National Conference for Postgraduate Research, January 2016, Universiti Malaysia Pahang, pp. 321-329.
  • [2] Yingjie, L.; Silong, L.; Bulent, S., Analysis of Pulsating Torque in Squirrel Cage Induction Machines by Investigating Stator Slot and Rotor Bar Dimensions for Traction Applications, IEEE Energy Conversion Congress and Exposition, 15-19 September 2013, Denver, CO, USA, pp. 246-253.
  • [3] https://www.emetor.com/glossary/torque-ripple/ [available]: 15.09.2019.
  • [4] Hayder, S. H.; Hanan, M. D.; Alwash, J. H., Torque Ripple Reduction based Direct Torque Control for Induction Motor Drive, Int. J. Eng. Res. Technol., 2014, 3(12): 1024-1032.
  • [5] Alexander, P.; Ing Habil, A. M., Reduction of Torque Ripple in Induction Motors by using A Modulated Rotor, GMM-Fachbericht 89: Innovative Klein-und Mikroantriebstechnik, 27–28 September 2017, Saarbrücken, pp. 57-62.
  • [6] Siavash, S.; Leila, P., Improved Technique for Minimizing Torque Pulsation in Halbach Array Permanent Magnet Machines, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2012, 31(6): 1590-1602.
  • [7] Dip, V. T.; Parminder, S.; Amandeep, K., A Novel Procedure for Torque Ripple Minimization of an Induction Motor, Int. J. Eng. Innovative Technol., 2017, 7(4): 26-33.
  • [8] Ho-Hyun, L.; Kyung-Il, W.; Han-Seok, P.; Dae-Kyong, K., Evaluation of Torque Ripple of an Optimal Designed 3-Phase Induction Motor using Uncertainty, Universal J. Electr. Electron. Eng., 2019, 6(3A): 68-73.
  • [9] Te-Jen, S.; Tung-Yeh, T.; Shih-Ming, W.; Tsung-Ying, L.; Hong-Quan, V., Torque Ripple Reduction of Induction Motor based on A Hybrid Method of Model Predictive Torque Control and Particle Swarm Optimization, Adv. Mech. Eng., 2016, 8(10): 01–13.
  • [10] Kaushik, B.; Prasad, J. S. S.; Narayanan, G., Reduction of Torque Ripple in Induction Motor Drives using an Advanced Hybrid PWM Technique, IEEE Trans. Ind. Electron., 2010, 57(6): 2085-2091.
  • [11] Ouahid, B.; Mohamed, S. B.; Abederrezzek, C., Minimizing Torque-Ripple in Inverter-Fed Induction Motor using Harmonic Elimination PWM Technique, Induction Motors - Modelling and Control, IntechOpen, 2012, pp. 01-23.
  • [12] Abdelli, R.; Rekioua, D.; Rekioua, T., Performances Improvements and Torque Ripple Minimization for VSI Fed Induction Machine with Direct Control Torque, ISA Trans., 2011, 50: 213-219.
  • [13] Kaboli, S.H.; Zolghadri, M. R.; Haghbin, S.; Eskandari, P., Investigation on the Flux-based Torque-Ripple Behavior in DTC based Induction Motor Drives, Iran. J. Sci. Technol. Trans. A., 2008, 32(A1): 07-16.
  • [14] Ranjit, K. B.; Inderderpreet, K., Torque Ripple Reduction of Induction Motor using Dynamic Fuzzy Prediction Direct Torque Control, ISA Trans., 2019.
  • [15] Ansys Maxwell 2D Field Simulator User’s Guide, Motors-Three Phase Induction Machine, 2019.
  • [16] Lazaridis, T., General Design Data of A Three Phase Induction Machine 90 kW–Squirrel Cage Rotor, Technical Report, 2016, pp. 01-15.
  • [17] Raul, R.; Torque Ripple, Vibrations, and Acoustic Noise in Switched Reluctance Motors, Hait J. Sci. Eng. B., 2005, 2(5-6): 776-786.
  • [18] Mostafa, J. K.; Babak, G., Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple, Can. J. Electr. Comput. Eng., 2015, 38(4): 318-322.

Asenkron Motorlarda Rotor Oluk Tipinin Moment Dalgalanması Üzerindeki Etkisinin Sonlu Elemanlar Yöntemi ile Analizi

Year 2020, Volume: 7 Issue: 2, 536 - 542, 31.05.2020
https://doi.org/10.31202/ecjse.664132

Abstract

Asenkron motorlar, sağlam yapıları, ucuz olmaları, az bakım gereksinimleri ve yüksek verimleri nedeniyle sanayi ve ev uygulamalarında en yaygın kullanılan motorlardır. Asenkron motorların en kritik parametrelerinden birisi olan moment hız karakteristiği rotor oluk yapılarına oldukça bağlıdır. Bu nedenle, asenkron motorunun tasarım sürecinde motor performansını en üst düzeye çıkarmak için oluk tipi ve oluk boyutlandırması düzgün şekilde gerçekleştirilmelidir. Asenkron motorun tasarım aşamasında, rotor oluk yapısının ve diğer parametrelerin seçimi büyük önem taşırken, moment dalgalanması, akustik gürültü ve mekanik titreşimler gibi etkiler büyük önem taşır ve motor tasarımcıları bu etkileri de dikkate almak zorundadır. Bu çalışmada, asenkron motorlarda moment dalgalanmasının etkileri ve farklı rotor oluk yapılarındaki moment dalgalanmasındaki değişiklikler araştırılmıştır. Analizler Maxwell RMxprt programı kullanılarak yapılmıştır. İlk olarak RMxprt programında statik motor modelleri oluşturulmuş ve analizler gerçekleştirilmiştir. Daha sonra motorların 2-D modelleri oluşturulmuş ve moment dalgalanmasındaki değişiklikleri elde etmek için analizler yapılmıştır. Rotor oluk yapısında 7 farklı oluk geometrisi kullanılmıştır. Minimum moment dalgalanmasına ve en iyi performans kriterlerine sahip rotor oluk geometrisi motor modelli belirlenmiştir. Motor modeli olarak 90 kW, 3 fazlı, sincap kafesli asenkron motor kullanılmıştır. Elde edilen sonuçlara göre, en düşük ve en yüksek moment dalgalanma oranı arasında %31,6’lık bir fark olduğu görülmüştür.

References

  • [1] Settar, S. K.; Ahmed, N. A.; Hatem, F. F.; Mohd, R. B. D., Three Phase Induction Motor Torque Ripple Minimization based on A Novel Nonlinear Dynamic Inverse Controller, The National Conference for Postgraduate Research, January 2016, Universiti Malaysia Pahang, pp. 321-329.
  • [2] Yingjie, L.; Silong, L.; Bulent, S., Analysis of Pulsating Torque in Squirrel Cage Induction Machines by Investigating Stator Slot and Rotor Bar Dimensions for Traction Applications, IEEE Energy Conversion Congress and Exposition, 15-19 September 2013, Denver, CO, USA, pp. 246-253.
  • [3] https://www.emetor.com/glossary/torque-ripple/ [available]: 15.09.2019.
  • [4] Hayder, S. H.; Hanan, M. D.; Alwash, J. H., Torque Ripple Reduction based Direct Torque Control for Induction Motor Drive, Int. J. Eng. Res. Technol., 2014, 3(12): 1024-1032.
  • [5] Alexander, P.; Ing Habil, A. M., Reduction of Torque Ripple in Induction Motors by using A Modulated Rotor, GMM-Fachbericht 89: Innovative Klein-und Mikroantriebstechnik, 27–28 September 2017, Saarbrücken, pp. 57-62.
  • [6] Siavash, S.; Leila, P., Improved Technique for Minimizing Torque Pulsation in Halbach Array Permanent Magnet Machines, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2012, 31(6): 1590-1602.
  • [7] Dip, V. T.; Parminder, S.; Amandeep, K., A Novel Procedure for Torque Ripple Minimization of an Induction Motor, Int. J. Eng. Innovative Technol., 2017, 7(4): 26-33.
  • [8] Ho-Hyun, L.; Kyung-Il, W.; Han-Seok, P.; Dae-Kyong, K., Evaluation of Torque Ripple of an Optimal Designed 3-Phase Induction Motor using Uncertainty, Universal J. Electr. Electron. Eng., 2019, 6(3A): 68-73.
  • [9] Te-Jen, S.; Tung-Yeh, T.; Shih-Ming, W.; Tsung-Ying, L.; Hong-Quan, V., Torque Ripple Reduction of Induction Motor based on A Hybrid Method of Model Predictive Torque Control and Particle Swarm Optimization, Adv. Mech. Eng., 2016, 8(10): 01–13.
  • [10] Kaushik, B.; Prasad, J. S. S.; Narayanan, G., Reduction of Torque Ripple in Induction Motor Drives using an Advanced Hybrid PWM Technique, IEEE Trans. Ind. Electron., 2010, 57(6): 2085-2091.
  • [11] Ouahid, B.; Mohamed, S. B.; Abederrezzek, C., Minimizing Torque-Ripple in Inverter-Fed Induction Motor using Harmonic Elimination PWM Technique, Induction Motors - Modelling and Control, IntechOpen, 2012, pp. 01-23.
  • [12] Abdelli, R.; Rekioua, D.; Rekioua, T., Performances Improvements and Torque Ripple Minimization for VSI Fed Induction Machine with Direct Control Torque, ISA Trans., 2011, 50: 213-219.
  • [13] Kaboli, S.H.; Zolghadri, M. R.; Haghbin, S.; Eskandari, P., Investigation on the Flux-based Torque-Ripple Behavior in DTC based Induction Motor Drives, Iran. J. Sci. Technol. Trans. A., 2008, 32(A1): 07-16.
  • [14] Ranjit, K. B.; Inderderpreet, K., Torque Ripple Reduction of Induction Motor using Dynamic Fuzzy Prediction Direct Torque Control, ISA Trans., 2019.
  • [15] Ansys Maxwell 2D Field Simulator User’s Guide, Motors-Three Phase Induction Machine, 2019.
  • [16] Lazaridis, T., General Design Data of A Three Phase Induction Machine 90 kW–Squirrel Cage Rotor, Technical Report, 2016, pp. 01-15.
  • [17] Raul, R.; Torque Ripple, Vibrations, and Acoustic Noise in Switched Reluctance Motors, Hait J. Sci. Eng. B., 2005, 2(5-6): 776-786.
  • [18] Mostafa, J. K.; Babak, G., Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple, Can. J. Electr. Comput. Eng., 2015, 38(4): 318-322.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Asım Gökhan Yetgin 0000-0003-3971-0504

Burhanettin Durmuş 0000-0002-8225-3313

Publication Date May 31, 2020
Submission Date December 24, 2019
Acceptance Date March 10, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

IEEE A. G. Yetgin and B. Durmuş, “Analysis of the Effect of Rotor Slot Type on Torque Ripple in Induction Motors by Finite Element Method”, El-Cezeri Journal of Science and Engineering, vol. 7, no. 2, pp. 536–542, 2020, doi: 10.31202/ecjse.664132.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png