Deniz yüzey sıcaklığı (DYS), okyanus ve atmosferik sistemlerin dinamiklerini anlamak ve gelecekteki iklim trendlerini tahmin etmek için kritik bir parametredir. Bu çalışmada, Avrupa Uzay Ajansı İklim Değişikliği Girişimi'nden, özellikle Deniz Yüzey Sıcaklığı İklim Değişikliği Girişimi (DYS IDG) projesinden elde edilen veriler kullanılarak, Zonguldak ve Bartın illerindeki DYS’nın ARIMA (otoregresif hareketli ortalamalar) yöntemini kullanarak modelliyoruz. Veri seti (boylam 31.25 ve enlem 40.95) 1981'den 2022'ye kadar olan 40 yıllık bir dönemi kapsamakta ve DYS trendleri ile mevsimsel varyasyonların bir değerlendirmesini içermektedir. Sonuçlar, çalışma dönemi boyunca DYS’de tutarlı bir artış göstermektedir ve mse (ortalama kare hatası) 0,07'dir.
Zonguldak ve Bartın illerindeki değişen DYS trendleri, balıkçılık ve turizm de dahil olmak üzere birçok endüstri ve sektör için önemli sonuçları vardır. Bu çalışmanın sonuçları bu alanlardaki karar verme süreçlerine ve iklim değişikliği uyum ve azaltma stratejileriyle ilgili politika kararlarına yardımcı olabilir. Bulgularımız ayrıca, DYS verilerinin alındığı DYS IDG projesi ve ARIMA yönteminin DYS verilerini modelleme etkinliği ve potansiyel sınırlamaları hakkında değerli bir iç görü sağlar.
Sea surface temperature (SST) is a critical parameter in understanding the dynamics of oceanic and atmospheric systems and predicting future climate trends. In this study, we use data obtained from the European Space Agency Climate Change Initiative, specifically from the Sea Surface Temperature Climate Change Initiative (SST CCI) project, to model SST in the Zonguldak and Bartın provinces using the autoregressive integrated moving average (ARIMA) method. The dataset covers 40 years from 1981 to 2022 (longitude 31.25 and latitude 40.95) and includes an assessment of FMS trends and seasonal variations. The results show a slight but consistent increase in SST over the study period, with a mean squared error of 0.07.
The changing SST trends in the Zonguldak and Bartın provinces have important implications for several industries and sectors, including fisheries and tourism. The results of this study can help inform decision-making in these areas as well as policy decisions pertaining to climate change adaptation and mitigation strategies. Our findings also provide valuable insights into the effectiveness of the ARIMA method for modeling SST data and the potential limitations of the data obtained from the SST CCI project.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | July 22, 2023 |
Submission Date | March 6, 2023 |
Published in Issue | Year 2023 Volume: 18 Issue: 67 |