BibTex RIS Cite

Physicochemical properties of chitosan and health applications

Year 2024, Volume: 19 Issue: 70, 179 - 199, 30.12.2024

Abstract

Chitosan is one of the polymers with many characteristics as a high-quality excipient. Current studies on the preparation of chitin or chitosan from shellfish by-products with high chitin content have shown promising results as industrial raw materials for chitosan production. The low cost of the resource suggests its use as an economically viable source for chitin production on an industrial scale. Chitosan and its derivatives have a wide range of applications in various fields such as medicine, pharmacy, biotechnology, industry, agriculture, and commercial research. Chitosan is widely used in medical and industrial applications due to its biocompatibility, biodegradability, non-toxicity, natural origin, and similarity to biological macromolecules. The applications in which chitosan is widely used include planning different drug delivery systems for various dosage forms such as oral, buccal, nasal, transdermal, parenteral, vaginal, cervical, intrauterine, and rectal; gene therapy; wound healing and burns; tissue engineering; dermatology; ophthalmology; dentistry; biosensors and bioimaging; immobilized enzymes; and veterinary medicine. In this study, some medical applications of chitosan were emphasized.

References

  • Abdullah, N. H., Borhan, A., Saadon, S. Z. A. H. (2024). Biosorption of wastewater pollutants by chitosan-based porous carbons: A sustainable approach for advanced wastewater treatment. Bioresource Technology Reports, 25, 101705. https://doi.org/10.1016/j.biteb.2023.101705
  • Adepu, Shivakalyani, and Seeram Ramakrishna. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 26(19). doi: 10.3390/molecules26195905.
  • Ahsan, Saad M., Mathai Thomas, Kranthi K. Reddy, Sujata Gopal Sooraparaju, Amit Asthana, and Ira Bhatnagar. (2018). Chitosan as Biomaterial in Drug Delivery and Tissue Engineering. International Journal of Biological Macromolecules 110:97–109. doi: 10.1016/j. ijbiomac.2017.08.140.
  • Reshad, R. A. I., Jishan, T. A., Chowdhury, N. N. (2021). Chitosan and its broad applications: A brief review. Available at SSRN 3842055.
  • Ali, A., & Ahmed, S. (2018). A Review on Chitosan and Its Nanocomposites in Drug Delivery. International Journal of Biological Macromolecules 109:273–86. doi: 10.1016/j.ijbiomac.2017.12.078.
  • Avcı, R., Mehmetoğlu, A. Ç. (2022). Characteristics of Chitosan from Aspergillus niger Micelles Produced in Waste Tea Extract. Akademik Gida, 20(4), 386–397. https://doi.org/10.24323/akademik-gida.1224354
  • Bernkop-Schnürch, A., Dünnhaupt, S. (2012). Chitosan-Based Drug Delivery Systems. European Journal of Pharmaceutics and Biopharmaceutics 81(3):463–69. doi: 10.1016/j.ejpb.2012.04.007.
  • Chung, Y. C., Chen, C. Y. (2008). Antibacterial Characteristics and Activity of Acid-Soluble Chitosan. Bioresource Technology 99(8):2806–14. doi: 10.1016/j.biortech.2007.06.044.
  • Dash, M., F. Chiellini, R. M. Ottenbrite, and E. Chiellini. (2011). Chitosan - A Versatile Semi-Synthetic Polymer in Biomedical Applications. Progress in Polymer Science (Oxford) 36(8):981–1014. doi: 10.1016/j. progpolymsci.2011.02.001.
  • Dmour, I., Islam, N. (2022). Recent Advances on Chitosan as an Adjuvant for Vaccine Delivery. International Journal of Biological Macromolecules 200 (September 2021):498–519. doi: 10.1016/j.ijbiomac.2021.12.129.
  • Gökçe, Y. (2008). Kitosan nanoparçacıklarının sentezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü.Guarnieri, A., Triunfo, M., Scieuzo, C., Ianniciello,
  • D., Tafi, E., Hahn, T., ... &Falabella, P. (2022). Antimicrobial Properties of Chitosan from Different Developmental Stages of the Bioconverter Insect Hermetia Illucens. Scientific Reports 12(1):1–12. doi: 10.1038/s41598- 022-12150-3.
  • Haider, A., Khan, S., Iqbal, D. N., Shrahili, M., Haider, S., Mohammad, K., Mohammad, A., Rizwan, M., Kanwal, Q., & Mustafa, G. (2024). Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. European Polymer Journal, 210 (February), 112983. https://doi.org/10.1016/j.eurpolymj.2024.112983
  • Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 48, 40–50. https://doi. org/10.1016/j.tifs.2015.11.007
  • Harish Prashanth, K. V., and R. N. Tharanathan. (2007). Chitin/Chitosan: Modifications and Their Unlimited Application Potential-an Overview. Trends in Food Science and Technology 18(3):117–31. doi: 10.1016/j. tifs.2006.10.022.
  • Hosseinnejad, M., Jafari, S. M. (2016). Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. International Journal of Biological Macromolecules 85:467–75. doi: 10.1016/j. ijbiomac.2016.01.022.
  • Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z.,Ni, Y. (2022). Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts, 7(2), 85–98. https://doi. org/10.1016/j.jobab.2022.01.002
  • Iber, B. T., Kasan, N. A., Torsabo, D., Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 1097–1123. https://doi.org/10.32604/JRM.2022.018142
  • Iwasaki, A. and Omer, S. B. (2020). Why and How Vaccines Work, Cell, 183(2), pp. 290–295. doi: 10.1016/j.cell.2020.09.040. Joseph, S.M., Krishnamoorthy, S., Paranthaman, R., Moses, J.A.,
  • Anandharamakrishnan, C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications, 2, 100036.
  • Kaya, M., Lelešius, E., Nagrockaitė, R., Sargin, I., Arslan, G., Mol, A., ... & Bitim, B. (2015). Differentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species. PLoS ONE 10(1). doi: 10.1371/journal.pone.0115531.
  • Ke, C. L., Deng, F. S., Chuang, C. Y., Lin, C. H. (2021). Antimicrobial Actions and Applications of Chitosan. Polymers 13(6). doi: 10.3390/ polym13060904.
  • Kou, S. (Gabriel), Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. ” International Journal of Biological Macromolecules, 169, 85–94. https://doi.org/10.1016/j. ijbiomac.2020.12.005
  • Kurtuluş, G. and Vardar, F. (2020). Kitosanın Özellikleri, Uygulama Alanları, Bitki Sistemlerine Etkileri. International Journal of Advances in Engineering and Pure Sciences, 32(3), pp. 258–269. doi: 10.7240/ jeps.635430.
  • Kuzgun, N. K. (2013). Kitosan Üretimi ve Özellikleri İle Kitosanın Kullanım Alanları. 6(2), 16–21.
  • Li, X., Min, M., Du, N., Gu, Y., Hode, T., Naylor, M., ... & Chen, W. R. (2013). Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine. Clinical and Developmental Immunology 2013. doi: 10.1155/2013/387023.
  • Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., & Fernandes, J. C. (2004). Chitosan-DNA Nanoparticles as Non-Viral Vectors in Gene Therapy: Strategies to Improve Transfection Efficacy. European Journal of Pharmaceutics and Biopharmaceutics 57(1):1–8. doi: 10.1016/ S0939-6411(03)00155-3.
  • Metin, C., Baygar, T. (2018). Denizel Kaynaklardan Elde Edilen Biyoaktif Maddeler ve Kozmetik Alanında Kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(4), 339–350. https:// doi.org/10.22392/egirdir.399363
  • Mohan, K., Kandasamy, S., Rajarajeswaran, J., Sundaram, T., Bjeljac, M., Surendran, R. P., &Ganesan, A. R. (2024). Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. International Journal of Biological Macromolecules, 280(P2), 135937. https://doi.org/10.1016/j.ijbiomac.2024.135937
  • Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environmental Chemistry Letters 17(4):1667–92. doi: 10.1007/s10311- 019-00904-x.
  • Negm, N. A., Hefni, H. H. H., Abd-Elaal, A. A. A., Badr, E. A., & Abou Kana, M. T. H. (2020). Advancement on modification of chitosan biopolymer and its potential applications. International Journal of Biological Macromolecules, 152, 681–702. https://doi.org/10.1016/j. ijbiomac.2020.02.196
  • Negrea, P., A. Caunii, I. Sarac, and M. Butnariu. (2015). The Study of Infrared Spectrum of Chitin and Chitosan Extract as Potential Sources of Biomass. Digest Journal of Nanomaterials and Biostructures, 10(4):1129– 38.
  • Nikaido, H., Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49(1), pp. 1–32. doi: 10.1128/ mmbr.49.1.1-32.1985.
  • Ogawa, K., Yui, T., Okuyama, K. (2004). Three D structures of chitosan. International Journal of Biological Macromolecules, 34(1–2), 1–8. https:// doi.org/10.1016/j.ijbiomac.2003.11.002
  • Pal, P., Pal, A., Nakashima, K.,Yadav, B. K. (2021). Applications of chitosan in environmental remediation: A review. In Chemosphere (Vol. 266). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2020.128934
  • Patrulea, V., Ostafe, V., Borchard, G., Jordan, O. (2015). Chitosan as a starting material for wound healing applications. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 97, pp. 417–426). Elsevier. https://doi.org/10.1016/j.ejpb.2015.08.004
  • Pérez, M. R., S. (2016). From chitin to chitosan. Chitosan-Based Hydrogels: Functions and Applications, 1–37. https://doi.org/10.1201/b11048-2
  • Philibert, T., Lee, B. H., & Fabien, N. (2017). Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Applied Biochemistry and Biotechnology 181(4):1314–37. doi: 10.1007/s12010- 016-2286-2.
  • Rajkumar, D. S. R., Keerthika, K., Vijayaragavan, V. (2024). Chitosan- Based Biomaterial in Wound Healing: A Review.” Cureus 16(2). doi: 10.7759/cureus.55193.
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science (Oxford), 31(7), pp. 603–632. doi: 10.1016/j. progpolymsci.2006.06.001.
  • Saravanan, A., Kumar, P. S., Yuvaraj, D., Jeevanantham, S., Aishwaria, P., Gnanasri, P. B., Gopinath, M., & Rangasamy, G. (2023). A review on extraction of polysaccharides from crustacean wastes and their environmental applications. Environmental Research, 221(November 2022), 115306. https://doi.org/10.1016/j.envres.2023.115306
  • Studzińska-Sroka, E., Paczkowska-Walendowska, M., Erdem, C., Paluszczak, J., Kleszcz, R., Hoszman-Kulisz, M.,Cielecka-Piontek, J. (2024). Anti-Aging Properties of Chitosan-Based Hydrogels Rich in Bilberry Fruit Extract. Antioxidants, 13(1). https://doi.org/10.3390/ antiox13010105
  • Thambiliyagodage, C., Jayanetti, M., Mendis, A., & Ekanayake, G. (2023). Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16(5), 2073; https://doi.org/10.3390/ma16052073
  • Tsai, G. J., Su, W. H. (1999). Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Protection 62(3):239–43. doi: 10.4315/0362-028X-62.3.239.
  • Wrońska, N., Katir, N., Nowak-Lange, M., El Kadib, A., Lisowska, K. (2023). Biodegradable Chitosan-Based Films as an Alternative to Plastic Packaging. Foods, 12(18), 1–12. https://doi.org/10.3390/foods12183519 Yıldız, P. O., & Yangılar, F. (2014). Gıda endüstrisinde kitosanın kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(3), 198-206.

Kitosanın fizikokimyasal özellikleri ve sağlık alanındaki uygulamaları

Year 2024, Volume: 19 Issue: 70, 179 - 199, 30.12.2024

Abstract

Kitosan, yüksek kalitede bir yardımcı madde olarak birçok karaktere sahip olan polimerlerden biridir. Yüksek oranda kitin içeren kabuklu yan ürünlerinden kitin veya kitosan hazırlanmasına ilişkin mevcut çalışmalar, kitosan üretimi için endüstriyel hammadde olarak umut verici sonuçlar göstermiştir. Kaynağın düşük maliyeti endüstriyel ölçekte kitin üretimi için ekonomik olarak uygulanabilir bir kaynak olarak kullanılmasını göstermektedir. Kitosan ve türevleri tıp, eczacılık, biyoteknoloji, endüstri, tarım ve ticari araştırmalar gibi çeşitli alanlarda geniş bir uygulama yelpazesine sahiptir. Kitosan biyouyumluluğu, biyobozunurluğu, toksik olmaması, doğal kökeni ve biyolojik makromoleküllere benzerliği ile tıbbi ve endüstriyel uygulamalarda geniş yer bulmaktadır. Kitosanın yaygın olarak yer aldığı uygulamalar; oral, bukkal, nazal, transdermal, parenteral, vajinal, servikal, intrauterin ve rektal gibi çeşitli dozaj formları için farklı ilaç taşıyıcı sistemleri planlanması, gen terapisi, yara iyileşmesi ve yanıklar, doku mühendisliği, dermatoloji, oftalmoloji, diş hekimliği, biyosensörler ve biyo-görüntüleme, immobilize enzimler ve veterinerlikte yaygın olarak kullanılmaktadır. Bu çalışmada, kitosanın bazı tıbbi uygulamaları üzerinde durulmuştur.

References

  • Abdullah, N. H., Borhan, A., Saadon, S. Z. A. H. (2024). Biosorption of wastewater pollutants by chitosan-based porous carbons: A sustainable approach for advanced wastewater treatment. Bioresource Technology Reports, 25, 101705. https://doi.org/10.1016/j.biteb.2023.101705
  • Adepu, Shivakalyani, and Seeram Ramakrishna. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 26(19). doi: 10.3390/molecules26195905.
  • Ahsan, Saad M., Mathai Thomas, Kranthi K. Reddy, Sujata Gopal Sooraparaju, Amit Asthana, and Ira Bhatnagar. (2018). Chitosan as Biomaterial in Drug Delivery and Tissue Engineering. International Journal of Biological Macromolecules 110:97–109. doi: 10.1016/j. ijbiomac.2017.08.140.
  • Reshad, R. A. I., Jishan, T. A., Chowdhury, N. N. (2021). Chitosan and its broad applications: A brief review. Available at SSRN 3842055.
  • Ali, A., & Ahmed, S. (2018). A Review on Chitosan and Its Nanocomposites in Drug Delivery. International Journal of Biological Macromolecules 109:273–86. doi: 10.1016/j.ijbiomac.2017.12.078.
  • Avcı, R., Mehmetoğlu, A. Ç. (2022). Characteristics of Chitosan from Aspergillus niger Micelles Produced in Waste Tea Extract. Akademik Gida, 20(4), 386–397. https://doi.org/10.24323/akademik-gida.1224354
  • Bernkop-Schnürch, A., Dünnhaupt, S. (2012). Chitosan-Based Drug Delivery Systems. European Journal of Pharmaceutics and Biopharmaceutics 81(3):463–69. doi: 10.1016/j.ejpb.2012.04.007.
  • Chung, Y. C., Chen, C. Y. (2008). Antibacterial Characteristics and Activity of Acid-Soluble Chitosan. Bioresource Technology 99(8):2806–14. doi: 10.1016/j.biortech.2007.06.044.
  • Dash, M., F. Chiellini, R. M. Ottenbrite, and E. Chiellini. (2011). Chitosan - A Versatile Semi-Synthetic Polymer in Biomedical Applications. Progress in Polymer Science (Oxford) 36(8):981–1014. doi: 10.1016/j. progpolymsci.2011.02.001.
  • Dmour, I., Islam, N. (2022). Recent Advances on Chitosan as an Adjuvant for Vaccine Delivery. International Journal of Biological Macromolecules 200 (September 2021):498–519. doi: 10.1016/j.ijbiomac.2021.12.129.
  • Gökçe, Y. (2008). Kitosan nanoparçacıklarının sentezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü.Guarnieri, A., Triunfo, M., Scieuzo, C., Ianniciello,
  • D., Tafi, E., Hahn, T., ... &Falabella, P. (2022). Antimicrobial Properties of Chitosan from Different Developmental Stages of the Bioconverter Insect Hermetia Illucens. Scientific Reports 12(1):1–12. doi: 10.1038/s41598- 022-12150-3.
  • Haider, A., Khan, S., Iqbal, D. N., Shrahili, M., Haider, S., Mohammad, K., Mohammad, A., Rizwan, M., Kanwal, Q., & Mustafa, G. (2024). Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. European Polymer Journal, 210 (February), 112983. https://doi.org/10.1016/j.eurpolymj.2024.112983
  • Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 48, 40–50. https://doi. org/10.1016/j.tifs.2015.11.007
  • Harish Prashanth, K. V., and R. N. Tharanathan. (2007). Chitin/Chitosan: Modifications and Their Unlimited Application Potential-an Overview. Trends in Food Science and Technology 18(3):117–31. doi: 10.1016/j. tifs.2006.10.022.
  • Hosseinnejad, M., Jafari, S. M. (2016). Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. International Journal of Biological Macromolecules 85:467–75. doi: 10.1016/j. ijbiomac.2016.01.022.
  • Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z.,Ni, Y. (2022). Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts, 7(2), 85–98. https://doi. org/10.1016/j.jobab.2022.01.002
  • Iber, B. T., Kasan, N. A., Torsabo, D., Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 1097–1123. https://doi.org/10.32604/JRM.2022.018142
  • Iwasaki, A. and Omer, S. B. (2020). Why and How Vaccines Work, Cell, 183(2), pp. 290–295. doi: 10.1016/j.cell.2020.09.040. Joseph, S.M., Krishnamoorthy, S., Paranthaman, R., Moses, J.A.,
  • Anandharamakrishnan, C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications, 2, 100036.
  • Kaya, M., Lelešius, E., Nagrockaitė, R., Sargin, I., Arslan, G., Mol, A., ... & Bitim, B. (2015). Differentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species. PLoS ONE 10(1). doi: 10.1371/journal.pone.0115531.
  • Ke, C. L., Deng, F. S., Chuang, C. Y., Lin, C. H. (2021). Antimicrobial Actions and Applications of Chitosan. Polymers 13(6). doi: 10.3390/ polym13060904.
  • Kou, S. (Gabriel), Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. ” International Journal of Biological Macromolecules, 169, 85–94. https://doi.org/10.1016/j. ijbiomac.2020.12.005
  • Kurtuluş, G. and Vardar, F. (2020). Kitosanın Özellikleri, Uygulama Alanları, Bitki Sistemlerine Etkileri. International Journal of Advances in Engineering and Pure Sciences, 32(3), pp. 258–269. doi: 10.7240/ jeps.635430.
  • Kuzgun, N. K. (2013). Kitosan Üretimi ve Özellikleri İle Kitosanın Kullanım Alanları. 6(2), 16–21.
  • Li, X., Min, M., Du, N., Gu, Y., Hode, T., Naylor, M., ... & Chen, W. R. (2013). Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine. Clinical and Developmental Immunology 2013. doi: 10.1155/2013/387023.
  • Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., & Fernandes, J. C. (2004). Chitosan-DNA Nanoparticles as Non-Viral Vectors in Gene Therapy: Strategies to Improve Transfection Efficacy. European Journal of Pharmaceutics and Biopharmaceutics 57(1):1–8. doi: 10.1016/ S0939-6411(03)00155-3.
  • Metin, C., Baygar, T. (2018). Denizel Kaynaklardan Elde Edilen Biyoaktif Maddeler ve Kozmetik Alanında Kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(4), 339–350. https:// doi.org/10.22392/egirdir.399363
  • Mohan, K., Kandasamy, S., Rajarajeswaran, J., Sundaram, T., Bjeljac, M., Surendran, R. P., &Ganesan, A. R. (2024). Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. International Journal of Biological Macromolecules, 280(P2), 135937. https://doi.org/10.1016/j.ijbiomac.2024.135937
  • Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environmental Chemistry Letters 17(4):1667–92. doi: 10.1007/s10311- 019-00904-x.
  • Negm, N. A., Hefni, H. H. H., Abd-Elaal, A. A. A., Badr, E. A., & Abou Kana, M. T. H. (2020). Advancement on modification of chitosan biopolymer and its potential applications. International Journal of Biological Macromolecules, 152, 681–702. https://doi.org/10.1016/j. ijbiomac.2020.02.196
  • Negrea, P., A. Caunii, I. Sarac, and M. Butnariu. (2015). The Study of Infrared Spectrum of Chitin and Chitosan Extract as Potential Sources of Biomass. Digest Journal of Nanomaterials and Biostructures, 10(4):1129– 38.
  • Nikaido, H., Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49(1), pp. 1–32. doi: 10.1128/ mmbr.49.1.1-32.1985.
  • Ogawa, K., Yui, T., Okuyama, K. (2004). Three D structures of chitosan. International Journal of Biological Macromolecules, 34(1–2), 1–8. https:// doi.org/10.1016/j.ijbiomac.2003.11.002
  • Pal, P., Pal, A., Nakashima, K.,Yadav, B. K. (2021). Applications of chitosan in environmental remediation: A review. In Chemosphere (Vol. 266). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2020.128934
  • Patrulea, V., Ostafe, V., Borchard, G., Jordan, O. (2015). Chitosan as a starting material for wound healing applications. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 97, pp. 417–426). Elsevier. https://doi.org/10.1016/j.ejpb.2015.08.004
  • Pérez, M. R., S. (2016). From chitin to chitosan. Chitosan-Based Hydrogels: Functions and Applications, 1–37. https://doi.org/10.1201/b11048-2
  • Philibert, T., Lee, B. H., & Fabien, N. (2017). Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Applied Biochemistry and Biotechnology 181(4):1314–37. doi: 10.1007/s12010- 016-2286-2.
  • Rajkumar, D. S. R., Keerthika, K., Vijayaragavan, V. (2024). Chitosan- Based Biomaterial in Wound Healing: A Review.” Cureus 16(2). doi: 10.7759/cureus.55193.
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science (Oxford), 31(7), pp. 603–632. doi: 10.1016/j. progpolymsci.2006.06.001.
  • Saravanan, A., Kumar, P. S., Yuvaraj, D., Jeevanantham, S., Aishwaria, P., Gnanasri, P. B., Gopinath, M., & Rangasamy, G. (2023). A review on extraction of polysaccharides from crustacean wastes and their environmental applications. Environmental Research, 221(November 2022), 115306. https://doi.org/10.1016/j.envres.2023.115306
  • Studzińska-Sroka, E., Paczkowska-Walendowska, M., Erdem, C., Paluszczak, J., Kleszcz, R., Hoszman-Kulisz, M.,Cielecka-Piontek, J. (2024). Anti-Aging Properties of Chitosan-Based Hydrogels Rich in Bilberry Fruit Extract. Antioxidants, 13(1). https://doi.org/10.3390/ antiox13010105
  • Thambiliyagodage, C., Jayanetti, M., Mendis, A., & Ekanayake, G. (2023). Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16(5), 2073; https://doi.org/10.3390/ma16052073
  • Tsai, G. J., Su, W. H. (1999). Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Protection 62(3):239–43. doi: 10.4315/0362-028X-62.3.239.
  • Wrońska, N., Katir, N., Nowak-Lange, M., El Kadib, A., Lisowska, K. (2023). Biodegradable Chitosan-Based Films as an Alternative to Plastic Packaging. Foods, 12(18), 1–12. https://doi.org/10.3390/foods12183519 Yıldız, P. O., & Yangılar, F. (2014). Gıda endüstrisinde kitosanın kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(3), 198-206.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Derleme
Authors

Ece Özdemir Babavatan 0000-0002-2583-2896

Merve Ataman 0000-0003-1648-6896

Publication Date December 30, 2024
Submission Date December 10, 2024
Acceptance Date December 15, 2024
Published in Issue Year 2024 Volume: 19 Issue: 70

Cite

APA Özdemir Babavatan, E., & Ataman, M. (2024). Kitosanın fizikokimyasal özellikleri ve sağlık alanındaki uygulamaları. Anadolu Bil Meslek Yüksekokulu Dergisi, 19(70), 179-199.



All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)