Research Article
BibTex RIS Cite

Protective effects of N-acetylcysteine and taurine on oxidative stress induced by chronic acetaldehyde administration in rat liver and brain tissues

Year 2019, Volume: 4 Issue: 3, 113 - 117, 01.12.2019
https://doi.org/10.25000/acem.579968

Abstract

Aim:
Acetaldehyde (AA) is one of the
main products of alcohol metabolism. Exposure to AA can occur through ingestion
of several dietary products, inhalation of cigarette smoke/automobile exhausts,
or contact with cosmetics. AA accumulation causes oxidative stress. The aim of
this study was to investigate the prooxidant/antioxidant status in rats
chronically exposed to AA, and to evaluate the effects of N-acetylcysteine
(NAC) and taurine (TAU) on prooxidant/antioxidant balance.

Methods: Sprague Dawley rats were divided in the
following groups (n=8; each): Control, AA, AA+NAC, AA+TAU. Reactive oxygen
species (ROS), diene conjugate (DC), malondialdehyde (MDA), protein carbonyl
(PC), ferric reducing antioxidant power (FRAP) and glutathione (GSH) levels as
well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities
were determined in liver and brain tissues.

Results: AA treatment in drinking water
was detected to induce prooxidant state in both liver and brain of rats. NAC
treatment decreased AA-induced prooxidant status in both tissues. Although TAU
treatment diminished ROS levels, MDA and PC levels remained unchanged in examined
tissues of AA-treated rats. NAC and TAU elevated liver and brain GSH levels in
AA-treated rats.







Conclusion:
Chronic AA administration has created a
prooxidant
condition, and NAC/TAU appears
to be useful in suppression of the developed oxidative stress.

Supporting Institution

Research Fund of Istanbul University

Project Number

33568 / 42685

Thanks

The present work was supported by the Research Fund of Istanbul University (Project No: 33568 / 42685).

References

  • 1. Guo R, Ren J. Alcohol and acetaldehyde in public health: From marvel to menace. Int J Environ Res Public Health. 2010;7:1285-301.
  • 2. Mizumoto A, Ohashi S, Hirohashi K, Amanuma Y, Matsuda T, Muto M. Molecular mechanisms of acetaldehyde-mediated carcinogenesis in squamous epithelium. Int J Mol Sci. 2017;18:1943.
  • 3. Peana AT, Sánchez-Catalán MJ, Hipólito L, Rosas M, Porru S, Bennardini F, et al. Mystic acetaldehyde: The Never-Ending Story on Alcoholism. Front Behav Neurosci. 2017;11: 81.
  • 4. Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, et al. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev. 2012;36:404-30.
  • 5. Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178-85.
  • 6. Yan T, Zhao Y, Zhang X, Lin X. Astaxanthin inhibits acetaldehyde-induced cytotoxicity in SH-SY5Y cells by modulating Akt/CREB and p38MAPK/ERK signaling pathways. Mar Drugs. 2016;14:56.
  • 7. Tamura M, Ito H, Matsui H, Hyodo I. Acetaldehyde is an oxidative stressor for gastric epithelial cells. J Clin Biochem Nutr. 2014;55:26-31.
  • 8. Stege TE, Hanby JD, Di Luzio NR. Acetaldehyde-induced hepatic lipid peroxidation. In: Seixas FA (ed). Currents in Alcoholism, Vol.1, p. 139. Grune and Stratton, New York 1977.
  • 9. Niemelä O, Parkkila S, Koll M, Preedy VR. Generation of protein adducts with malondialdehyde and acetaldehyde in muscles with predominantly type I or type II fibers in rats exposed to ethanol and the acetaldehyde dehydrogenase inhibitor cyanamide. Am J Clin Nutr. 2002;76:668-74.
  • 10. Aberle II NS, Run J. Experimental assessment of the role of acetaldehyde in alcoholic cardiomyopathy. Biol Proced Online. 2003;5:1-12.
  • 11. Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60,146-57.
  • 12. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim et Biophys Acta. 2013;1830:4117-29.
  • 13. De Andrade KQ, Moura FA, dos Santos JM, de Araújo OR, de Farias Santos JC, Goulart MO. Oxidative stress and inflammation in hepatic diseases: therapeutic possibilities of N-acetylcysteine. Int J Mol Sci. 2015;16:30269-308.
  • 14. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Therap. 2018;26:225-41.
  • 15. Miyazaki T, Matsuzaki Y. Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids. 2014;46:101-10.
  • 16. Ronis MJ, Butura A, Sampey BP, Shankar K, Prior RL, Korourian S, et al. Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Rad Biol Med. 2005;39:619-30.
  • 17. Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res. 2014;38:2896-906.
  • 18. Balkan J, Kanbağlı Ö, Aykaç-Toker G, Uysal M. Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biol Pharm Bull. 2002;25:1231-3.
  • 19. Pushpakiran G, Mahalaksmi K, Anuradha CV. Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids. 2004;27:91-6.
  • 20. Matysiak-Budnik T, Jokelainen K, Kärkkäinen P, Mäkisalo H, Ohisalo J, Salaspuro M. Hepatotoxicity and absorption of extrahepatic acetaldehyde in rats. J Pathol. 1996;178:469-74.
  • 21. Jokelainen K, Parkkila S, Salaspuro M, Niemelä O. Covalent adducts of proteins with acetaldehyde in liver as a results of acetaldehyde administration in drinking water. J Hepatol. 2000;33:926-32.
  • 22. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27:612-6.
  • 23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351-8.
  • 24. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-63.
  • 25. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70-6.
  • 26. Beutler E, Duron O, Kelly BM. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61:882-8.
  • 27. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-20.
  • 28. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-69.
  • 29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85.
  • 30. Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25:599-609.
  • 31. Ren J, Wold LE. Mechanisms of alcoholic heart disease. Ther Adv Cardiovasc Dis. 2008;2:497-506. 32. Stege TE. Acetaldehyde-induced hepatic lipid peroxidation in isolated hepatocytes. Res Com Chem Pathol Pharmacol. 1982;36:287-97.
  • 33. Uysal M, Özdemirler G, Kutalp G, Oz H. Mitochondrial and microsomal lipid peroxidasyon in rat liver after acute acetaldehyde and ethanol intoxication. J Appl Toxicol. 1989;9:155-8.
  • 34. Videla LA, Fernández V, de Marinis A. Liver lipoperoxidative pressure and glutathione status following acetaldehyde and aliphatic alcohols pretreatments in the rat. Biochem Biophys Res Commun. 1987;104:965-70.
  • 35. Farbiszewski R, Holownia A, Chwiecko M. The changes in sulfhydryl compounds in plasma, liver and brain after acute and chronic ethanol administration in rats. Drug Alcohol Depend. 1987;20:129-33.
  • 36. Menegola E, Broccia ML, Prati M, Ricolfi R, Giavini E.Glutathione and N-acetylcysteine protection against acetaldehyde embryotoxicity in rat embryos developing in vitro. Toxicology In Vitro 1995; 9: 633-641.
  • 37. Seo JB, Gowda GAN, Koh D. Apoptotic Damage of Pancreatic Ductal Epithelia by Alcohol and Its Rescue by an Antioxidant. PLoS One. 2013;8:e81893.
  • 38. Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. Reactivity of taurine with aldehydes and its physiological role. Adv Exp Med Biol. 1994;359:71-8.

Kronik asetaldehit uygulaması ile uyarılan oksidatif streste sıçan karaciğerinde ve beyin dokularında N-asetilsistein ve taurinin koruyucu etkileri

Year 2019, Volume: 4 Issue: 3, 113 - 117, 01.12.2019
https://doi.org/10.25000/acem.579968

Abstract

Amaç: Asetaldehit (AA), alkol metabolizmasının ana
ürünlerinden biridir.
AA'e maruz kalma birçok diyet ürününün
yenmesi, sigara dumanı/otomobil egzozlarının solunması veya kozmetik ürünlerle
temas yoluyla oluşabilir.
AA birikimi oksidatif strese neden olur. Bu
çalışmanın amacı kronik AA'e maruz kalan sıçanlarda prooksidant/antioksidan
durumunu araştırmak ve N-asetil sistein (NAC) ve taurinin (TAU) proksidant/antioksidan
dengesi üzerindeki etkilerini değerlendirmektir.

Yöntemler: Sprague Dawley
sıçanlar aşağıdaki gruplara ayrıldı (n = 8; her biri): Kontrol, AA, AA+NAC,
AA+TAU.
Karaciğer ve beyin dokularında reaktif oksijen
türleri (ROS), dien konjugatları (DC), malondialdehit (MDA), protein karbonil
(PC), ferrik indirgeyici antioksidan güç (FRAP) ve glutatyon (GSH) düzeyleri ve
ayrıca süperoksit dismutaz (SOD) ve glutatyon peroksidaz (GSH-Px) aktiviteleri incelendi.

Bulgular: İçme suyu ile AA uygulanan sıçanların karaciğer
ve beyin dokularında prooksidan bir durum oluştuğu saptandı. NAC uygulaması her
iki dokuda AA’e bağlı prooksidan durumu azalttı. TAU incelenen dokularda ROS
oluşumunu azaltmasına rağmen, MDA ve PC düzeyleri değişmedi. NAC
and TAU AA uygulanan sıçanların karaciğer ve beyinlerinde GSH düzeylerini
arttırdı.







Sonuç: Kronik AA
uygulamasının proksidant bir durum yarattığını, NAC/TAU uygulamalarının AA ile
uyarılan oksidatif stresin baskılamada yararlı olabildiği görülmektedir.

Project Number

33568 / 42685

References

  • 1. Guo R, Ren J. Alcohol and acetaldehyde in public health: From marvel to menace. Int J Environ Res Public Health. 2010;7:1285-301.
  • 2. Mizumoto A, Ohashi S, Hirohashi K, Amanuma Y, Matsuda T, Muto M. Molecular mechanisms of acetaldehyde-mediated carcinogenesis in squamous epithelium. Int J Mol Sci. 2017;18:1943.
  • 3. Peana AT, Sánchez-Catalán MJ, Hipólito L, Rosas M, Porru S, Bennardini F, et al. Mystic acetaldehyde: The Never-Ending Story on Alcoholism. Front Behav Neurosci. 2017;11: 81.
  • 4. Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, et al. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev. 2012;36:404-30.
  • 5. Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178-85.
  • 6. Yan T, Zhao Y, Zhang X, Lin X. Astaxanthin inhibits acetaldehyde-induced cytotoxicity in SH-SY5Y cells by modulating Akt/CREB and p38MAPK/ERK signaling pathways. Mar Drugs. 2016;14:56.
  • 7. Tamura M, Ito H, Matsui H, Hyodo I. Acetaldehyde is an oxidative stressor for gastric epithelial cells. J Clin Biochem Nutr. 2014;55:26-31.
  • 8. Stege TE, Hanby JD, Di Luzio NR. Acetaldehyde-induced hepatic lipid peroxidation. In: Seixas FA (ed). Currents in Alcoholism, Vol.1, p. 139. Grune and Stratton, New York 1977.
  • 9. Niemelä O, Parkkila S, Koll M, Preedy VR. Generation of protein adducts with malondialdehyde and acetaldehyde in muscles with predominantly type I or type II fibers in rats exposed to ethanol and the acetaldehyde dehydrogenase inhibitor cyanamide. Am J Clin Nutr. 2002;76:668-74.
  • 10. Aberle II NS, Run J. Experimental assessment of the role of acetaldehyde in alcoholic cardiomyopathy. Biol Proced Online. 2003;5:1-12.
  • 11. Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60,146-57.
  • 12. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim et Biophys Acta. 2013;1830:4117-29.
  • 13. De Andrade KQ, Moura FA, dos Santos JM, de Araújo OR, de Farias Santos JC, Goulart MO. Oxidative stress and inflammation in hepatic diseases: therapeutic possibilities of N-acetylcysteine. Int J Mol Sci. 2015;16:30269-308.
  • 14. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Therap. 2018;26:225-41.
  • 15. Miyazaki T, Matsuzaki Y. Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids. 2014;46:101-10.
  • 16. Ronis MJ, Butura A, Sampey BP, Shankar K, Prior RL, Korourian S, et al. Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Rad Biol Med. 2005;39:619-30.
  • 17. Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res. 2014;38:2896-906.
  • 18. Balkan J, Kanbağlı Ö, Aykaç-Toker G, Uysal M. Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biol Pharm Bull. 2002;25:1231-3.
  • 19. Pushpakiran G, Mahalaksmi K, Anuradha CV. Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids. 2004;27:91-6.
  • 20. Matysiak-Budnik T, Jokelainen K, Kärkkäinen P, Mäkisalo H, Ohisalo J, Salaspuro M. Hepatotoxicity and absorption of extrahepatic acetaldehyde in rats. J Pathol. 1996;178:469-74.
  • 21. Jokelainen K, Parkkila S, Salaspuro M, Niemelä O. Covalent adducts of proteins with acetaldehyde in liver as a results of acetaldehyde administration in drinking water. J Hepatol. 2000;33:926-32.
  • 22. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27:612-6.
  • 23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351-8.
  • 24. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-63.
  • 25. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70-6.
  • 26. Beutler E, Duron O, Kelly BM. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61:882-8.
  • 27. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-20.
  • 28. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-69.
  • 29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85.
  • 30. Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25:599-609.
  • 31. Ren J, Wold LE. Mechanisms of alcoholic heart disease. Ther Adv Cardiovasc Dis. 2008;2:497-506. 32. Stege TE. Acetaldehyde-induced hepatic lipid peroxidation in isolated hepatocytes. Res Com Chem Pathol Pharmacol. 1982;36:287-97.
  • 33. Uysal M, Özdemirler G, Kutalp G, Oz H. Mitochondrial and microsomal lipid peroxidasyon in rat liver after acute acetaldehyde and ethanol intoxication. J Appl Toxicol. 1989;9:155-8.
  • 34. Videla LA, Fernández V, de Marinis A. Liver lipoperoxidative pressure and glutathione status following acetaldehyde and aliphatic alcohols pretreatments in the rat. Biochem Biophys Res Commun. 1987;104:965-70.
  • 35. Farbiszewski R, Holownia A, Chwiecko M. The changes in sulfhydryl compounds in plasma, liver and brain after acute and chronic ethanol administration in rats. Drug Alcohol Depend. 1987;20:129-33.
  • 36. Menegola E, Broccia ML, Prati M, Ricolfi R, Giavini E.Glutathione and N-acetylcysteine protection against acetaldehyde embryotoxicity in rat embryos developing in vitro. Toxicology In Vitro 1995; 9: 633-641.
  • 37. Seo JB, Gowda GAN, Koh D. Apoptotic Damage of Pancreatic Ductal Epithelia by Alcohol and Its Rescue by an Antioxidant. PLoS One. 2013;8:e81893.
  • 38. Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. Reactivity of taurine with aldehydes and its physiological role. Adv Exp Med Biol. 1994;359:71-8.
There are 37 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section Original Research
Authors

Zeynep Dicle Yıldız This is me 0000-0002-6518-0538

Adile Merve Baki This is me

Canan Başaran-küçükgergin This is me 0000-0002-1797-5889

Pervin Vural 0000-0001-6462-7388

Semra Doğru-abbasoğlu This is me 0000-0003-3467-9763

Müjdat Uysal This is me 0000-0002-8802-8766

Project Number 33568 / 42685
Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 4 Issue: 3

Cite

Vancouver Yıldız ZD, Baki AM, Başaran-küçükgergin C, Vural P, Doğru-abbasoğlu S, Uysal M. Protective effects of N-acetylcysteine and taurine on oxidative stress induced by chronic acetaldehyde administration in rat liver and brain tissues. Arch Clin Exp Med. 2019;4(3):113-7.