Research Article
BibTex RIS Cite

Ameliorative effects of varenicline and bupropion on morphine-induced conditioned place preference in rats

Year 2022, , 214 - 226, 30.09.2022
https://doi.org/10.47482/acmr.1159319

Abstract

Background: Rewarding properties of morphine constitue the principal reasons for drug-craving behaviors which appear during morphine addiction. Varenicline and bupropion were reported to have some positive effects on addictive substances by different studies. In this study, the effects of varenicline and bupropion on morphine rewarding properties were investigated via conditioned place preference (CPP) in rats.

Methods: Conditioning was performed by intraperitoneal (i.p.) administration of morphine (10 mg/kg, i.p., 1, 3, 5, and 7 days) and saline (2,4, 6, and 8 days). To evaluate the development of dependence, subcutaneous administration of varenicline (0.5, 1 and 2 mg/kg, s.c.) or bupropion (5, 10 and 20 mg/kg, i.p.) was carried out 15 minutes before the administration of morphine. To evaluate the expression of dependence, varenicline or bupropion was administered 15 minutes before the test on 9th day. To investigate the extinction of the reward effect, drugs were tested daily on days 14, 18, and 22 and evaluated for reinstatement on 23rd day.

Results: Systemic morphine administration statistically significant produced CPP. Varenicline and bupropion did not reduce the development of morphine-induced CPP. In addition, varenicline and bupropion decreased expression, reinstatement and accelerated the extinction of morphine-induced CPP. Unlike varenicline, bupropion statistically significant produced CPP and altered locomotor activity.

Conclusions: These data suggest that varenicline and bupropion may be useful therapeutic pharmacological agents to reduce morphine dependence. The results of our research provide preliminary evidence to highlight the importance of the effects of varenicline and bupropion on morphine dependence. In the future, it would be appropriate to conduct mechanistic studies to explain the underlying mechanisms by using different methods on the subject.

Supporting Institution

This work was supported by the Scientific Research Projects Unit of Istanbul University

Project Number

(Research Funding No: 21845)

Thanks

The authors gratefully acknowledge the support of the Scientific Research Projects Coordination Unit (Research Funding No: 21845) of Istanbul University, Istanbul, Turkey.

References

  • 1. Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res 2020; 1731, 146028.
  • 2. Azadfard M, Huecker MR, Leaming JM. Opioid Addiction. In StatPearls; Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., 2020.
  • 3. Lee YH, Brown DL, Chen HY. Current Impact and Application of Abuse-Deterrent Opioid Formulations in Clinical Practice. Pain Physician 2017; 20 (7), E1003-e1023.
  • 4. Mattioli L, Titomanlio F, Perfumi M. Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2012; 221 (2), 183-193.
  • 5. Allahverdiyev O, Nurten A, Enginar N. Assessment of rewarding and reinforcing properties of biperiden in conditioned place preference in rats. Behav Brain Res 2011; 225 (2), 642-645.
  • 6. Klein JW. Pharmacotherapy for Substance Use Disorders. Med Clin North Am 2016; 100 (4), 891-910.
  • 7. Crunelle CL, Miller ML, Booij J, van den Brink W. The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 2010; 20 (2), 69-79.
  • 8. McCaul ME, Wand GS, Kuwabara H, Dannals RF, Wong D, Xu X. The Relationship of Varenicline Agonism of α4β2 Nicotinic Acetylcholine Receptors and Nicotine-Induced Dopamine Release in Nicotine-Dependent Humans. Nicotine Tob Res 2020; 22 (6), 892-899.
  • 9. Rezayof A, Zatali H, Haeri-Rohani A, Zarrindast MR. Dorsal hippocampal muscarinic and nicotinic receptors are involved in mediating morphine reward. Behav Brain Res 2006; 166 (2), 281-290.
  • 10. Zarrindast MR, Farzin D. Nicotine attenuates naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol 1996; 298 (1), 1-6.
  • 11. Suh HW, Song DK, Choi SR, Chung KM, Kim YH. Nicotine enhances morphine- and beta-endorphin-induced antinociception at the supraspinal level in the mouse. Neuropeptides 1996; 30 (5), 479-484.
  • 12. Davenport KE, Houdi AA, Van Loon GR. Nicotine protects against mu-opioid receptor antagonism by beta-funaltrexamine: evidence for nicotine-induced release of endogenous opioids in brain. Neurosci Lett 1990; 113 (1), 40-46.
  • 13. Malin DH, Lake JR, Carter VA, Cunningham JS, Wilson OB. Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology (Berl) 1993; 112 (2-3), 339-342.
  • 14. Ise Y, Narita M, Nagase H, Suzuki T. Modulation of kappaopioidergic systems on mecamylamine-precipitated nicotinewithdrawal aversion in rats. Neurosci Lett 2002; 323 (2), 164-166.
  • 15. Houdi AA, Pierzchala K, Marson L, Palkovits M, Van Loon GR. Nicotine-induced alteration in Tyr-Gly-Gly and Met-enkephalin in discrete brain nuclei reflects altered enkephalin neuron activity. Peptides 1991; 12 (1), 161-166.
  • 16. Wewers ME, Dhatt RK, Snively TA, Tejwani GA. The effect of chronic administration of nicotine on antinociception, opioid receptor binding and met-enkelphalin levels in rats. Brain Res 1999; 822 (1-2), 107-113.
  • 17. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD, 3rd, Williams KE. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 2007; 52 (3), 985-994.
  • 18. Söderpalm B, Danielsson K, de Bejczy A, Adermark L, Ericson M. Combined administration of varenicline and bupropion produces additive effects on accumbal dopamine and abolishes the alcohol deprivation effect in rats. Addict Biol 2020; 25 (5), e12807.
  • 19. Chan-Ob T, Kuntawongse N, Boonyanaruthee V. Bupropion for amphetamine withdrawal syndrome. J Med Assoc Thai 2001; 84 (12), 1763-1765.
  • 20. Hamdy MM, Elbadr MM, Barakat A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol Rep 2018; 70 (5), 955-962.
  • 21. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 1993; 18 (1), 75- 113.
  • 22. Rodríguez De Fonseca F, Rubio P, Martín-Calderón JL, Caine SB, Koob GF, Navarro M. The dopamine receptor agonist 7-OH-DPAT modulates the acquisition and expression of morphine-induced place preference. Eur J Pharmacol 1995; 274 (1-3), 47-55.
  • 23. McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 2005; 25 (25), 6005-6015.
  • 24. Scavone JL, Van Bockstaele EJ. Mu-opioid receptor redistribution in the locus coeruleus upon precipitation of withdrawal in opiatedependent rats. Anat Rec (Hoboken) 2009; 292 (3), 401-411.
  • 25. Cryan JF, O’Leary OF, Jin SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 2004; 101 (21), 8186-8191.
  • 26. Prus AJ, James JR, Rosecrans JA. Frontiers in Neuroscience Conditioned Place Preference. In Methods of Behavior Analysis in Neuroscience; Buccafusco J.J., ed.; Boca Raton (FL): CRC Press/ Taylor & Francis Copyright © 2009, Taylor & Francis Group, LLC., 2009.
  • 27. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12 (3-4), 227-462.
  • 28. Yunusoğlu O. Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice. Am J Drug Alcohol Abuse 2021, 1-11.
  • 29. Köse Ç, Shahzadi A, Akkan AG, Özyazgan S. The Effect of Orphenadrine on Rewarding Property of Morphine-Induced Conditioned Place Preference. Cerrahpaşa Medical Journal 2020; 44 (2), 80-85.
  • 30. Yunusoğlu O. Quercetin attenuates the rewarding effect of ethanol in conditioned place preference in mice. Neurosci Lett 2021, 136383.
  • 31. McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14, 582147.
  • 32. Zarrindast MR, Bahreini T, Adl M. Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacol Biochem Behav 2002; 73 (4), 941-949.
  • 33. Yunusoğlu O. Resveratrol impairs acquisition, reinstatement and precipitates extinction of alcohol-induced place preference in mice. Neurol Res 2021; 43 (12), 985-994.
  • 34. Budzyńska B, Biała G. Effects of bupropion on the reinstatement of nicotine-induced conditioned place preference by drug priming in rats. Pharmacol Rep 2011; 63 (2), 362-371.
  • 35. Gubner NR, McKinnon CS, Phillips TJ. Effects of varenicline on ethanol-induced conditioned place preference, locomotor stimulation, and sensitization. Alcohol Clin Exp Res 2014; 38 (12), 3033-3042.
  • 36. Biala G, Staniak N, Budzynska B. Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn Schmiedebergs Arch Pharmacol 2010; 381 (4), 361-370.
  • 37. Narasingam M, Pandy V, Mohamed Z. Noni (Morinda citrifolia L.) fruit extract attenuates the rewarding effect of heroin in conditioned place preference but not withdrawal in rodents. Exp Anim 2016; 65 (2), 157-164.
  • 38. Patel D, Sundar M, Lorenz E, Leong KC. Oxytocin Attenuates Expression, but Not Acquisition, of Sucrose Conditioned Place Preference in Rats. Front Behav Neurosci 2020; 14, 603232.
  • 39. Hillhouse TM, Olson KM, Hallahan JE, Rysztak LG, Sears BF, Meurice C, Ostovar M, Koppenhaver PO, West JL, Jutkiewicz EM, Husbands SM, Traynor JR. The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. J Pharmacol Exp Ther 2021; 378 (3), 287-299.
  • 40. O’Neal TJ, Bernstein MX, MacDougall DJ, Ferguson SM. A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens. J Neurosci 2022.
  • 41. Steinpreis RE, Rutell AL, Parrett FA. Methadone produces conditioned place preference in the rat. Pharmacol Biochem Behav 1996; 54 (2), 339-341.
  • 42. Brockwell NT, Eikelboom R, Beninger RJ. Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol Biochem Behav 1991; 38 (3), 513-517.
  • 43. Tuazon DB, Suzuki T, Misawa M, Watanabe S. Methylxanthines (caffeine and theophylline) blocked methamphetamine-induced conditioned place preference in mice but enhanced that induced by cocaine. Ann N Y Acad Sci 1992; 654, 531-533.
  • 44. Porru S, Maccioni R, Bassareo V, Peana AT, Salamone JD, Correa M, Acquas E. Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. J Psychopharmacol 2020; 34 (12), 1357-1370.
  • 45. Pandy V, Wai YC, Amira Roslan NF, Sajat A, Abdulla Jallb AH, Vijeepallam K. Methanolic extract of Morinda citrifolia Linn. unripe fruit attenuates methamphetamine-induced conditioned place preferences in mice. Biomed Pharmacother 2018; 107, 368- 373.
  • 46. McKendrick G, Sharma S, Sun D, Randall PA, Graziane NM. Acute and chronic bupropion treatment does not prevent morphine-induced conditioned place preference in mice. Eur J Pharmacol 2020; 889, 173638.
  • 47. Ortmann R. The conditioned place preference paradigm in rats: effect of bupropion. Life Sci 1985; 37 (21), 2021-2027.
  • 48. Rauhut AS, Hawrylak M, Mardekian SK. Bupropion differentially alters the aversive, locomotor and rewarding properties of nicotine in CD-1 mice. Pharmacol Biochem Behav 2008; 90 (4), 598-607.
  • 49. Hooten WM, Warner DO. Varenicline for opioid withdrawal in patients with chronic pain: a randomized, single-blinded, placebo controlled pilot trial. Addict Behav 2015; 42, 69-72.
  • 50. Martin RA, Rohsenow DJ, Tidey JW. Smokers with opioid use disorder may have worse drug use outcomes after varenicline than nicotine replacement. J Subst Abuse Treat 2019; 104, 22-27.
  • 51. Singh D, Saadabadi A. Varenicline. In StatPearls; Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., 2020.
  • 52. Ren J, Ding X, Greer JJ. Countering Opioid-induced Respiratory Depression in Male Rats with Nicotinic Acetylcholine Receptor Partial Agonists Varenicline and ABT 594. Anesthesiology 2020;132 (5), 1197-1211.
  • 53. Ishida S, Kawasaki Y, Araki H, Asanuma M, Matsunaga H, Sendo T, Kawasaki H, Gomita Y, Kitamura Y. α7 Nicotinic acetylcholine receptors in the central amygdaloid nucleus alter naloxoneinduced withdrawal following a single exposure to morphine. Psychopharmacology (Berl) 2011; 214 (4), 923-931.
  • 54. Bodnar RJ. Endogenous opiates and behavior: 2014. Peptides 2016; 75, 18-70.
  • 55. Crunelle CL, Schulz S, de Bruin K, Miller ML, van den Brink W, Booij J. Dose-dependent and sustained effects of varenicline on dopamine D2/3 receptor availability in rats. Eur Neuropsychopharmacol 2011; 21 (2), 205-210.
  • 56. Crunelle CL, de Wit TC, de Bruin K, Ramakers RM, van der Have F, Beekman FJ, van den Brink W, Booij J. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-highresolution pinhole [123I]IBZM SPECT study in rats. Nucl Med Biol 2012; 39 (5), 640-644.
  • 57. Oon-Arom A, Likhitsathain S, Srisurapanont M. Efficacy and acceptability of varenicline for alcoholism: A systematic review and meta-analysis of randomized-controlled trials. Drug Alcohol Depend 2019; 205, 107631.
  • 58. Gandhi KD, Mansukhani MP, Karpyak VM, Schneekloth TD, Wang Z, Kolla BP. The Impact of Varenicline on Alcohol Consumption in Subjects With Alcohol Use Disorders: Systematic Review and Meta-Analyses. J Clin Psychiatry 2020; 81 (2).
  • 59. Bajo M, Madamba SG, Roberto M, Siggins GR. Acute morphine alters GABAergic transmission in the central amygdala during naloxoneprecipitated morphine withdrawal: role of cyclic AMP. Front Integr Neurosci 2014; 8, 45.
  • 60. DuBois DW, Damborsky JC, Fincher AS, Frye GD, Winzer-Serhan UH. Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons. Life Sci 2013; 92 (6-7), 337-344.
  • 61. Liu P, Che X, Yu L, Yang X, An N, Song W, Wu C, Yang J. Uridine attenuates morphine-induced conditioned place preference and regulates glutamate/GABA levels in mPFC of mice. Pharmacol Biochem Behav 2017; 163, 74-82.
  • 62. Meng S, Quan W, Qi X, Su Z, Yang S. Effect of baclofen on morphineinduced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice. Psychopharmacology (Berl) 2014; 231 (1), 27-36.
  • 63. Kang L, Wang D, Li B, Hu M, Zhang P, Li J. Mirtazapine, a noradrenergic and specific serotonergic antidepressant, attenuates morphine dependence and withdrawal in Sprague-Dawley rats. Am J Drug Alcohol Abuse 2008; 34 (5), 541-552.
  • 64. Charkhpour M, Jafari RM, Ghavimi H, Ghanbarzadeh S, Parvizpur A. Duloxetine attenuated morphine withdrawal syndrome in the rat. Drug Res (Stuttg) 2014; 64 (8), 393-398.
  • 65. Veilleux JC, Colvin PJ, Anderson J, York C, Heinz AJ. A review of opioid dependence treatment: pharmacological and psychosocial interventions to treat opioid addiction. Clin Psychol Rev 2010; 30 (2), 155-166.
  • 66. Allahverdiyev O, Türkmen AZ, Nurten A, Sehirli I, Enginar N. Spontaneous withdrawal in intermittent morphine administration in rats and mice: effect of clonidine coadministration and sex-related differences. Turk J Med Sci 2015; 45 (6), 1380-1389.
  • 67. Horseman C, Meyer A. Neurobiology of Addiction. Clin Obstet Gynecol 2019; 62 (1), 118-127.
  • 68. Uhl GR, Koob GF, Cable J. The neurobiology of addiction. Ann N Y Acad Sci 2019; 1451 (1), 5-28.
  • 69. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015; 38 (4), 217-225.
Year 2022, , 214 - 226, 30.09.2022
https://doi.org/10.47482/acmr.1159319

Abstract

Project Number

(Research Funding No: 21845)

References

  • 1. Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res 2020; 1731, 146028.
  • 2. Azadfard M, Huecker MR, Leaming JM. Opioid Addiction. In StatPearls; Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., 2020.
  • 3. Lee YH, Brown DL, Chen HY. Current Impact and Application of Abuse-Deterrent Opioid Formulations in Clinical Practice. Pain Physician 2017; 20 (7), E1003-e1023.
  • 4. Mattioli L, Titomanlio F, Perfumi M. Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2012; 221 (2), 183-193.
  • 5. Allahverdiyev O, Nurten A, Enginar N. Assessment of rewarding and reinforcing properties of biperiden in conditioned place preference in rats. Behav Brain Res 2011; 225 (2), 642-645.
  • 6. Klein JW. Pharmacotherapy for Substance Use Disorders. Med Clin North Am 2016; 100 (4), 891-910.
  • 7. Crunelle CL, Miller ML, Booij J, van den Brink W. The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 2010; 20 (2), 69-79.
  • 8. McCaul ME, Wand GS, Kuwabara H, Dannals RF, Wong D, Xu X. The Relationship of Varenicline Agonism of α4β2 Nicotinic Acetylcholine Receptors and Nicotine-Induced Dopamine Release in Nicotine-Dependent Humans. Nicotine Tob Res 2020; 22 (6), 892-899.
  • 9. Rezayof A, Zatali H, Haeri-Rohani A, Zarrindast MR. Dorsal hippocampal muscarinic and nicotinic receptors are involved in mediating morphine reward. Behav Brain Res 2006; 166 (2), 281-290.
  • 10. Zarrindast MR, Farzin D. Nicotine attenuates naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol 1996; 298 (1), 1-6.
  • 11. Suh HW, Song DK, Choi SR, Chung KM, Kim YH. Nicotine enhances morphine- and beta-endorphin-induced antinociception at the supraspinal level in the mouse. Neuropeptides 1996; 30 (5), 479-484.
  • 12. Davenport KE, Houdi AA, Van Loon GR. Nicotine protects against mu-opioid receptor antagonism by beta-funaltrexamine: evidence for nicotine-induced release of endogenous opioids in brain. Neurosci Lett 1990; 113 (1), 40-46.
  • 13. Malin DH, Lake JR, Carter VA, Cunningham JS, Wilson OB. Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology (Berl) 1993; 112 (2-3), 339-342.
  • 14. Ise Y, Narita M, Nagase H, Suzuki T. Modulation of kappaopioidergic systems on mecamylamine-precipitated nicotinewithdrawal aversion in rats. Neurosci Lett 2002; 323 (2), 164-166.
  • 15. Houdi AA, Pierzchala K, Marson L, Palkovits M, Van Loon GR. Nicotine-induced alteration in Tyr-Gly-Gly and Met-enkephalin in discrete brain nuclei reflects altered enkephalin neuron activity. Peptides 1991; 12 (1), 161-166.
  • 16. Wewers ME, Dhatt RK, Snively TA, Tejwani GA. The effect of chronic administration of nicotine on antinociception, opioid receptor binding and met-enkelphalin levels in rats. Brain Res 1999; 822 (1-2), 107-113.
  • 17. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD, 3rd, Williams KE. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 2007; 52 (3), 985-994.
  • 18. Söderpalm B, Danielsson K, de Bejczy A, Adermark L, Ericson M. Combined administration of varenicline and bupropion produces additive effects on accumbal dopamine and abolishes the alcohol deprivation effect in rats. Addict Biol 2020; 25 (5), e12807.
  • 19. Chan-Ob T, Kuntawongse N, Boonyanaruthee V. Bupropion for amphetamine withdrawal syndrome. J Med Assoc Thai 2001; 84 (12), 1763-1765.
  • 20. Hamdy MM, Elbadr MM, Barakat A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol Rep 2018; 70 (5), 955-962.
  • 21. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 1993; 18 (1), 75- 113.
  • 22. Rodríguez De Fonseca F, Rubio P, Martín-Calderón JL, Caine SB, Koob GF, Navarro M. The dopamine receptor agonist 7-OH-DPAT modulates the acquisition and expression of morphine-induced place preference. Eur J Pharmacol 1995; 274 (1-3), 47-55.
  • 23. McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 2005; 25 (25), 6005-6015.
  • 24. Scavone JL, Van Bockstaele EJ. Mu-opioid receptor redistribution in the locus coeruleus upon precipitation of withdrawal in opiatedependent rats. Anat Rec (Hoboken) 2009; 292 (3), 401-411.
  • 25. Cryan JF, O’Leary OF, Jin SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 2004; 101 (21), 8186-8191.
  • 26. Prus AJ, James JR, Rosecrans JA. Frontiers in Neuroscience Conditioned Place Preference. In Methods of Behavior Analysis in Neuroscience; Buccafusco J.J., ed.; Boca Raton (FL): CRC Press/ Taylor & Francis Copyright © 2009, Taylor & Francis Group, LLC., 2009.
  • 27. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12 (3-4), 227-462.
  • 28. Yunusoğlu O. Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice. Am J Drug Alcohol Abuse 2021, 1-11.
  • 29. Köse Ç, Shahzadi A, Akkan AG, Özyazgan S. The Effect of Orphenadrine on Rewarding Property of Morphine-Induced Conditioned Place Preference. Cerrahpaşa Medical Journal 2020; 44 (2), 80-85.
  • 30. Yunusoğlu O. Quercetin attenuates the rewarding effect of ethanol in conditioned place preference in mice. Neurosci Lett 2021, 136383.
  • 31. McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14, 582147.
  • 32. Zarrindast MR, Bahreini T, Adl M. Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacol Biochem Behav 2002; 73 (4), 941-949.
  • 33. Yunusoğlu O. Resveratrol impairs acquisition, reinstatement and precipitates extinction of alcohol-induced place preference in mice. Neurol Res 2021; 43 (12), 985-994.
  • 34. Budzyńska B, Biała G. Effects of bupropion on the reinstatement of nicotine-induced conditioned place preference by drug priming in rats. Pharmacol Rep 2011; 63 (2), 362-371.
  • 35. Gubner NR, McKinnon CS, Phillips TJ. Effects of varenicline on ethanol-induced conditioned place preference, locomotor stimulation, and sensitization. Alcohol Clin Exp Res 2014; 38 (12), 3033-3042.
  • 36. Biala G, Staniak N, Budzynska B. Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn Schmiedebergs Arch Pharmacol 2010; 381 (4), 361-370.
  • 37. Narasingam M, Pandy V, Mohamed Z. Noni (Morinda citrifolia L.) fruit extract attenuates the rewarding effect of heroin in conditioned place preference but not withdrawal in rodents. Exp Anim 2016; 65 (2), 157-164.
  • 38. Patel D, Sundar M, Lorenz E, Leong KC. Oxytocin Attenuates Expression, but Not Acquisition, of Sucrose Conditioned Place Preference in Rats. Front Behav Neurosci 2020; 14, 603232.
  • 39. Hillhouse TM, Olson KM, Hallahan JE, Rysztak LG, Sears BF, Meurice C, Ostovar M, Koppenhaver PO, West JL, Jutkiewicz EM, Husbands SM, Traynor JR. The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. J Pharmacol Exp Ther 2021; 378 (3), 287-299.
  • 40. O’Neal TJ, Bernstein MX, MacDougall DJ, Ferguson SM. A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens. J Neurosci 2022.
  • 41. Steinpreis RE, Rutell AL, Parrett FA. Methadone produces conditioned place preference in the rat. Pharmacol Biochem Behav 1996; 54 (2), 339-341.
  • 42. Brockwell NT, Eikelboom R, Beninger RJ. Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol Biochem Behav 1991; 38 (3), 513-517.
  • 43. Tuazon DB, Suzuki T, Misawa M, Watanabe S. Methylxanthines (caffeine and theophylline) blocked methamphetamine-induced conditioned place preference in mice but enhanced that induced by cocaine. Ann N Y Acad Sci 1992; 654, 531-533.
  • 44. Porru S, Maccioni R, Bassareo V, Peana AT, Salamone JD, Correa M, Acquas E. Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. J Psychopharmacol 2020; 34 (12), 1357-1370.
  • 45. Pandy V, Wai YC, Amira Roslan NF, Sajat A, Abdulla Jallb AH, Vijeepallam K. Methanolic extract of Morinda citrifolia Linn. unripe fruit attenuates methamphetamine-induced conditioned place preferences in mice. Biomed Pharmacother 2018; 107, 368- 373.
  • 46. McKendrick G, Sharma S, Sun D, Randall PA, Graziane NM. Acute and chronic bupropion treatment does not prevent morphine-induced conditioned place preference in mice. Eur J Pharmacol 2020; 889, 173638.
  • 47. Ortmann R. The conditioned place preference paradigm in rats: effect of bupropion. Life Sci 1985; 37 (21), 2021-2027.
  • 48. Rauhut AS, Hawrylak M, Mardekian SK. Bupropion differentially alters the aversive, locomotor and rewarding properties of nicotine in CD-1 mice. Pharmacol Biochem Behav 2008; 90 (4), 598-607.
  • 49. Hooten WM, Warner DO. Varenicline for opioid withdrawal in patients with chronic pain: a randomized, single-blinded, placebo controlled pilot trial. Addict Behav 2015; 42, 69-72.
  • 50. Martin RA, Rohsenow DJ, Tidey JW. Smokers with opioid use disorder may have worse drug use outcomes after varenicline than nicotine replacement. J Subst Abuse Treat 2019; 104, 22-27.
  • 51. Singh D, Saadabadi A. Varenicline. In StatPearls; Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., 2020.
  • 52. Ren J, Ding X, Greer JJ. Countering Opioid-induced Respiratory Depression in Male Rats with Nicotinic Acetylcholine Receptor Partial Agonists Varenicline and ABT 594. Anesthesiology 2020;132 (5), 1197-1211.
  • 53. Ishida S, Kawasaki Y, Araki H, Asanuma M, Matsunaga H, Sendo T, Kawasaki H, Gomita Y, Kitamura Y. α7 Nicotinic acetylcholine receptors in the central amygdaloid nucleus alter naloxoneinduced withdrawal following a single exposure to morphine. Psychopharmacology (Berl) 2011; 214 (4), 923-931.
  • 54. Bodnar RJ. Endogenous opiates and behavior: 2014. Peptides 2016; 75, 18-70.
  • 55. Crunelle CL, Schulz S, de Bruin K, Miller ML, van den Brink W, Booij J. Dose-dependent and sustained effects of varenicline on dopamine D2/3 receptor availability in rats. Eur Neuropsychopharmacol 2011; 21 (2), 205-210.
  • 56. Crunelle CL, de Wit TC, de Bruin K, Ramakers RM, van der Have F, Beekman FJ, van den Brink W, Booij J. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-highresolution pinhole [123I]IBZM SPECT study in rats. Nucl Med Biol 2012; 39 (5), 640-644.
  • 57. Oon-Arom A, Likhitsathain S, Srisurapanont M. Efficacy and acceptability of varenicline for alcoholism: A systematic review and meta-analysis of randomized-controlled trials. Drug Alcohol Depend 2019; 205, 107631.
  • 58. Gandhi KD, Mansukhani MP, Karpyak VM, Schneekloth TD, Wang Z, Kolla BP. The Impact of Varenicline on Alcohol Consumption in Subjects With Alcohol Use Disorders: Systematic Review and Meta-Analyses. J Clin Psychiatry 2020; 81 (2).
  • 59. Bajo M, Madamba SG, Roberto M, Siggins GR. Acute morphine alters GABAergic transmission in the central amygdala during naloxoneprecipitated morphine withdrawal: role of cyclic AMP. Front Integr Neurosci 2014; 8, 45.
  • 60. DuBois DW, Damborsky JC, Fincher AS, Frye GD, Winzer-Serhan UH. Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons. Life Sci 2013; 92 (6-7), 337-344.
  • 61. Liu P, Che X, Yu L, Yang X, An N, Song W, Wu C, Yang J. Uridine attenuates morphine-induced conditioned place preference and regulates glutamate/GABA levels in mPFC of mice. Pharmacol Biochem Behav 2017; 163, 74-82.
  • 62. Meng S, Quan W, Qi X, Su Z, Yang S. Effect of baclofen on morphineinduced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice. Psychopharmacology (Berl) 2014; 231 (1), 27-36.
  • 63. Kang L, Wang D, Li B, Hu M, Zhang P, Li J. Mirtazapine, a noradrenergic and specific serotonergic antidepressant, attenuates morphine dependence and withdrawal in Sprague-Dawley rats. Am J Drug Alcohol Abuse 2008; 34 (5), 541-552.
  • 64. Charkhpour M, Jafari RM, Ghavimi H, Ghanbarzadeh S, Parvizpur A. Duloxetine attenuated morphine withdrawal syndrome in the rat. Drug Res (Stuttg) 2014; 64 (8), 393-398.
  • 65. Veilleux JC, Colvin PJ, Anderson J, York C, Heinz AJ. A review of opioid dependence treatment: pharmacological and psychosocial interventions to treat opioid addiction. Clin Psychol Rev 2010; 30 (2), 155-166.
  • 66. Allahverdiyev O, Türkmen AZ, Nurten A, Sehirli I, Enginar N. Spontaneous withdrawal in intermittent morphine administration in rats and mice: effect of clonidine coadministration and sex-related differences. Turk J Med Sci 2015; 45 (6), 1380-1389.
  • 67. Horseman C, Meyer A. Neurobiology of Addiction. Clin Obstet Gynecol 2019; 62 (1), 118-127.
  • 68. Uhl GR, Koob GF, Cable J. The neurobiology of addiction. Ann N Y Acad Sci 2019; 1451 (1), 5-28.
  • 69. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015; 38 (4), 217-225.
There are 69 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section ORIGINAL ARTICLE
Authors

Oruç Yunusoğlu 0000-0003-1075-9574

Çagla Köse 0000-0002-3298-6746

Andleeb Shahzadi 0000-0002-3298-6746

Bülent Demir 0000-0003-1767-408X

Burak Önal 0000-0002-7846-875X

Sibel Özyazgan This is me 0000-0002-2511-3541

Ahmet Gökhan Akkan 0000-0002-6799-1721

Project Number (Research Funding No: 21845)
Publication Date September 30, 2022
Submission Date August 12, 2022
Published in Issue Year 2022

Cite

APA Yunusoğlu, O., Köse, Ç., Shahzadi, A., Demir, B., et al. (2022). Ameliorative effects of varenicline and bupropion on morphine-induced conditioned place preference in rats. Archives of Current Medical Research, 3(3), 214-226. https://doi.org/10.47482/acmr.1159319

Archives of Current Medical Research (ACMR), araştırmaları ücretsiz sunmanın daha büyük bir küresel bilgi alışverişini desteklediğini göz önünde bulundurarak, tüm içeriğe anında açık erişim sağlar. Kamunun erişimine açık olması, daha büyük bir küresel bilgi alışverişini destekler.

http://www.acmronline.org/