Research Article
BibTex RIS Cite

Wet cupping therapy removes oxidative stress related miRNAs

Year 2023, Volume: 4 Issue: 3, 178 - 185, 27.09.2023
https://doi.org/10.47482/acmr.1285642

Abstract

Background: Wet cupping therapy is commonly used in different conditions such as hypertension, diabetes, inflammatory and infectious diseases. The mechanism of action of wet cupping therapy is not yet clear, however several studies have demonstrated that it has a role in limiting oxidative stress. The aim of this study was to investigate the effect of wet cupping therapy on oxidative stress-related miRNAs miRNA-34a, miRNA-200a, miRNA-21 levels and oxidant-antioxidant status markers malondialdehyde (MDA) and glutathione (GSH) levels.
Methods: 60 healthy volunteer women aged 20-75 years (n=30, 20-45 years; n=30, 45-75 years) who were applied wet cupping at Konya Necmettin Erbakan University Meram Medical Faculty Traditional and Complementary Medicine Center were included in this study. Plasma miRNA-34a, miRNA-200a and miRNA-21 levels were analyzed by using real-time quantitative PCR (RT-PCR) analysis. MDA and GSH levels were measured using the commercial ELISA kits.
Results: MDA levels [2003.10 (1810.17-7392.15) vs 1884.04 (1800.10-4488.05), p=0.027] of wet cupping blood samples higher than venous blood samples, while GSH levels [125.97 (90.65-219.43) vs 131.77 (88.77-246.42), p=0.037] were lower. miRNA-34a [(0.94±0.74) vs (0.53±0.28), p<0.001], miRNA-21 [0.058 (0.01-0.54) vs 0.033 (0.01±0.18), p=0.001] and miRNA-200a [24.42 (7.46-103.97) vs 20.32 (4.32-56.49), p=0.037] levels of wet cupping blood samples were significantly higher than venous blood samples.
Conclusions: Wet cupping therapy eliminates oxidative stress-related miRNAs from the body. Therefore, it is seen as a promising method in the welfare of reactive oxygen species (ROS)-related diseases by limiting oxidative damage.

Supporting Institution

Necmettin Erbakan University

Project Number

181318002

Thanks

The authors would like to thank the Necmettin Erbakan University for funding this project.

References

  • Mehta P, Dhapte V. Cupping therapy: A prudent remedy for a plethora of medical ailments. J Tradit Complement Med. 2015;5(3):127-34.
  • Aboushanab TS, AlSanad S. Cupping therapy: An overview from a modern medicine perspective. J Acupunct Meridian Stud. 2018;11(3):83-87.
  • Li JQ, Guo W, Sun ZG, Huang QS, Lee EY, Wang Y, et al. Cupping therapy for treating knee osteoarthritis: The evidence from systematic review and meta-analysis. Complement Ther Clin Pract. 2017;28:152- 60.
  • Al-Bedah AMN, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GIM, El- Olemy AT, et al. The medical perspective of cupping therapy: Effects and mechanisms of action. J Tradit Complement Med. 2019;9(2):90-97.
  • Umar NK, Tursunbadalov S, Surgun S, Welcome MO, Dane S. The effects of wet cupping therapy on the blood levels of some heavy metals: A pilot study. J Acupunct Meridian Stud. 2018;11(6):375-79.
  • Al-Bedah A, Aboushanab T, Alqaed M, Qureshi N, Sohaibani I, Ali G, et al. Classification of cupping therapy: A tool for modernization and standardization. J Complement Med Res. 2016;1:1-10.
  • Ma SY, Wang Y, Xu JQ, Zheng L. Cupping therapy for treating ankylosing spondylitis: The evidence from systematic review and meta-analysis. Complement Ther Clin Pract. 2018;32:187-94.
  • El Sayed SM, Mahmoud HS, Nabo MMH. Methods of wet cupping therapy (Al-Hijamah): In light of modern medicine and prophetic medicine. Altern Integ Med. 2013;2(3):1-16.
  • Al-Bedah AMN, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GIM, El- Olemy AT, et al. The medical perspective of cupping therapy: Effects and mechanisms of action. J Tradit Complement Med. 2018;9(2):90-97
  • Al-Tabakha MM, Sameer FT, Saeed MH, Batran RM, Abouhegazy NT, Farajallah AA. Evaluation of bloodletting cupping therapy in the management of hypertension. J Pharm Bioallied Sci. 2018;10(1):1-6.
  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101-10.
  • Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci. 2020;27(1):177-83.
  • Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65- 74.
  • Dwivedi S, Purohit P, Sharma P. MicroRNAs and Diseases: Promising Biomarkers for Diagnosis and Therapeutics. Indian Journal of Clin Biochem. 2019;34(3):243-45.
  • Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci.2019;20(23).
  • Huang W. MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 2017;1617:57-67.
  • Gok S, Kazanci F, Erdamar H, Gokgoz N, Hartiningsih S, Dane S. Is it possible to remove heavy metals from the body by wet cupping therapy (Al-hijamah)? Indian J Tradit Knowl. 2016;15:700-04.
  • Tagil SM, Celik HT, Ciftci S, Kazanci FH, Arslan M, Erdamar N, et al. Wet-cupping removes oxidants and decreases oxidative stress. Complement Ther Med. 2014;22(6):1032-6.
  • Ersoy S, Altinoz E, Benli AR, Erdemli ME, Aksungur Z, Bag HG, et al. Investigation of wet cupping therapy’s effect on oxidative stress based on biochemical parameters. Eur J Integr Med. 2019;30:100946.
  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019; 9(11):735.
  • Panth N, Paudel KR, Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv Med. 2016;2016:9152732-32.
  • Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, et al. Reactive oxygen species and their impact in neurodegenerative diseases: Literature landscape analysis. Antioxid Redox Signal. 2021;34(5):402-420.
  • Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative stress-responsive microRNAs in heart injury. Int J Mol Sci. 2020;21(1):358.
  • Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607.
  • Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126(6):1283-90.
  • Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The role of microRNAs in diabetes-related oxidative stress. Int J Mol Sci. 2019; 20(21): 5423.
  • La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol. 2018; 17(1): 105.
  • La Sala L, Mrakic-Sposta S, Tagliabue E, Prattichizzo F, Micheloni S, Sangalli E, et al. Circulating microRNA-21 is an early predictor of ROSmediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc Diabetol. 2019;18(1):18-18.
  • Lu C, Zhou D, Wang Q, Liu W, Yu F, Wu F, et al. Crosstalk of MicroRNAs and oxidative stress in the pathogenesis of cancer. Oxid Med Cell. 2020; 2020:2415324.
  • Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011;286(47):40725-33.
  • Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat. 2011;129(3):983-91.
  • Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011;17(12):1627-35.
Year 2023, Volume: 4 Issue: 3, 178 - 185, 27.09.2023
https://doi.org/10.47482/acmr.1285642

Abstract

Project Number

181318002

References

  • Mehta P, Dhapte V. Cupping therapy: A prudent remedy for a plethora of medical ailments. J Tradit Complement Med. 2015;5(3):127-34.
  • Aboushanab TS, AlSanad S. Cupping therapy: An overview from a modern medicine perspective. J Acupunct Meridian Stud. 2018;11(3):83-87.
  • Li JQ, Guo W, Sun ZG, Huang QS, Lee EY, Wang Y, et al. Cupping therapy for treating knee osteoarthritis: The evidence from systematic review and meta-analysis. Complement Ther Clin Pract. 2017;28:152- 60.
  • Al-Bedah AMN, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GIM, El- Olemy AT, et al. The medical perspective of cupping therapy: Effects and mechanisms of action. J Tradit Complement Med. 2019;9(2):90-97.
  • Umar NK, Tursunbadalov S, Surgun S, Welcome MO, Dane S. The effects of wet cupping therapy on the blood levels of some heavy metals: A pilot study. J Acupunct Meridian Stud. 2018;11(6):375-79.
  • Al-Bedah A, Aboushanab T, Alqaed M, Qureshi N, Sohaibani I, Ali G, et al. Classification of cupping therapy: A tool for modernization and standardization. J Complement Med Res. 2016;1:1-10.
  • Ma SY, Wang Y, Xu JQ, Zheng L. Cupping therapy for treating ankylosing spondylitis: The evidence from systematic review and meta-analysis. Complement Ther Clin Pract. 2018;32:187-94.
  • El Sayed SM, Mahmoud HS, Nabo MMH. Methods of wet cupping therapy (Al-Hijamah): In light of modern medicine and prophetic medicine. Altern Integ Med. 2013;2(3):1-16.
  • Al-Bedah AMN, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GIM, El- Olemy AT, et al. The medical perspective of cupping therapy: Effects and mechanisms of action. J Tradit Complement Med. 2018;9(2):90-97
  • Al-Tabakha MM, Sameer FT, Saeed MH, Batran RM, Abouhegazy NT, Farajallah AA. Evaluation of bloodletting cupping therapy in the management of hypertension. J Pharm Bioallied Sci. 2018;10(1):1-6.
  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101-10.
  • Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci. 2020;27(1):177-83.
  • Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65- 74.
  • Dwivedi S, Purohit P, Sharma P. MicroRNAs and Diseases: Promising Biomarkers for Diagnosis and Therapeutics. Indian Journal of Clin Biochem. 2019;34(3):243-45.
  • Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci.2019;20(23).
  • Huang W. MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 2017;1617:57-67.
  • Gok S, Kazanci F, Erdamar H, Gokgoz N, Hartiningsih S, Dane S. Is it possible to remove heavy metals from the body by wet cupping therapy (Al-hijamah)? Indian J Tradit Knowl. 2016;15:700-04.
  • Tagil SM, Celik HT, Ciftci S, Kazanci FH, Arslan M, Erdamar N, et al. Wet-cupping removes oxidants and decreases oxidative stress. Complement Ther Med. 2014;22(6):1032-6.
  • Ersoy S, Altinoz E, Benli AR, Erdemli ME, Aksungur Z, Bag HG, et al. Investigation of wet cupping therapy’s effect on oxidative stress based on biochemical parameters. Eur J Integr Med. 2019;30:100946.
  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019; 9(11):735.
  • Panth N, Paudel KR, Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv Med. 2016;2016:9152732-32.
  • Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, et al. Reactive oxygen species and their impact in neurodegenerative diseases: Literature landscape analysis. Antioxid Redox Signal. 2021;34(5):402-420.
  • Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative stress-responsive microRNAs in heart injury. Int J Mol Sci. 2020;21(1):358.
  • Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607.
  • Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126(6):1283-90.
  • Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The role of microRNAs in diabetes-related oxidative stress. Int J Mol Sci. 2019; 20(21): 5423.
  • La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol. 2018; 17(1): 105.
  • La Sala L, Mrakic-Sposta S, Tagliabue E, Prattichizzo F, Micheloni S, Sangalli E, et al. Circulating microRNA-21 is an early predictor of ROSmediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc Diabetol. 2019;18(1):18-18.
  • Lu C, Zhou D, Wang Q, Liu W, Yu F, Wu F, et al. Crosstalk of MicroRNAs and oxidative stress in the pathogenesis of cancer. Oxid Med Cell. 2020; 2020:2415324.
  • Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011;286(47):40725-33.
  • Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat. 2011;129(3):983-91.
  • Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011;17(12):1627-35.
There are 32 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section ORIGINAL ARTICLE
Authors

Berivan Unat 0000-0003-0178-8306

Fatma Hümryra Yerlikaya 0000-0002-4107-5389

Hayriye Baltaoğlu Alp 0000-0002-7262-2234

Duygu Eryavuz Onmaz 0000-0001-8564-1824

Project Number 181318002
Publication Date September 27, 2023
Submission Date April 19, 2023
Published in Issue Year 2023 Volume: 4 Issue: 3

Cite

APA Unat, B., Yerlikaya, F. H., Baltaoğlu Alp, H., Eryavuz Onmaz, D. (2023). Wet cupping therapy removes oxidative stress related miRNAs. Archives of Current Medical Research, 4(3), 178-185. https://doi.org/10.47482/acmr.1285642

Archives of Current Medical Research (ACMR) provides instant open access to all content, bearing in mind the fact that presenting research

free to the public supports a greater global exchange of knowledge.

http://www.acmronline.org/