Mu Opioid Agonistic Effect on Neuropeptide Gene Expression Levels Involved in Hypothalamic Feeding Regulation
Year 2025,
Volume: 6 Issue: 1, 1 - 7, 31.01.2025
Fatma Bedia Karakaya Cimen
,
Zeliha Erkaya Turan
,
Aysu Sen
,
Kaniye Zeynep Caliskan Sak
,
Canan Eroglu Günes
,
Ercan Kurar
,
Yasin Ali Cimen
,
Selim Kutlu
Abstract
Background: The regulation of food intake in the hypothalamus is one of most complicated through the integration of various neuroendocrine mechanisms. In this region, orexigenic and anorexigenic peptides play a role by responding to different stimuli. Additionally, central opioidergic systems are involved in the regulation of feeding behavior. Several neuropeptides expressed in the hypothalamus also contribute to the regulation of food intake. The aim of this study was to investigate the effects of mu opioidergic agonist/antagonist molecules on both orexigenic and anorexigenic peptides gene expression levels in the hypothalamus.
Methods: In our study, 48 male Wistar Albino rats were divided into 4 groups as control, morphine, naloxone and morphine+naloxone. The control group received subcutaneous SF solution for 5 days; morphine group received morphine at a dose of 10 mg/kg/day for 5 days; naloxone group SF was administered for 5 days and naloxone at a dose of 3 mg/kg 1.5 hours after the last injection: morphine+naloxone group received naloxone 1.5 hours after 5 days of morphine injection. Hypothalamus tissues were isolated from brains at the end of experimental period. Anorexigenic and orexigenic peptide expression levels were analysed by RT-PCR method. Differences between groups were statistically analyzed using one-way factorial ANOVA and Tukey post-hoc test.
Results: Morphine administration results in a decrease in the expression levels of OX2R and LepR genes, but did not change ORXA, OX1R, AgRP, NPY, POMC gene expression. Naloxone administration increased AgRP and NPY expression while decreasing OX2R, LepR and APLNR gene expression levels.
Conclusions: Our findings suggest that morphine may affect the gene expression of molecules related to regulation of nutrition and metabolism in the hypothalamus. Further studies are needed to clarify the possible mechanistic effects of mu opiodergic activity on the central control of feeding in morphine dependence manner.
Ethical Statement
This project has been approved by Necmettin Erbakan University Experimental Animals Local Ethics Committee (Project Number: 2023-041)
Supporting Institution
This study was supported by Necmettin Erbakan University Scientific Research Projects Coordination Office with project number 23YL18003.
Thanks
We would like to thank Necmettin Erbakan University Scientific Research Projects Coordination Office for their support.
References
- 1. Cimen YA, Ozdengul F, Eroglu Gunes C, Kurar E, Solak Gormus ZI, Caliskan Sak KZ et al. Investigation of Melatonin Receptors Gene Expression Levels in the Hippocampus and Hypothalamus in Rats with an Experimental Morphine Dependence Model. Ann Med Res. 2024;31(10):860-864.
- 2. Desjardins GC, Brawer JR and Beaudet A. Distribution of μ, δ and κ opioid receptors in the hypothalamus of the rat. Brain Res. 1990; 536(1-2): 114-123.
- 3. Cox BM. Recent developments in the study of opioid receptors. Mol. Pharmacol. 2013; 83(4): 723-728.
- 4. Gosnell B and Levine A. Reward systems and food intake: role of opioids. IJO. 2009; 33(2): S54-S58.
- 5. Volkow ND and McLellan AT. Opioid abuse in chronic pain—misconceptions and mitigation strategies. NEJM. 2016; 374(13): 1253-1263.
- 6. Schulteis G, Heyser CJ and Koob GF. Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: potentiation with a second morphine exposure. Psychopharmacology. 1997; 129: 56-65.
7. Bodnar RJ. Endogenous opiates and behavior: 2006. Peptides. 2007; 28(12): 2435-2513.
- 8. Stanley BG, Lanthier D and Leibowitz SF. Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol. Biochem. Behav. 1988; 31(4): 825-832.
- 9. Calderwood MT, Tseng A and Glenn Stanley B. Lateral septum mu opioid receptors in stimulation of feeding. Brain Res. 2020; 1734: 146648.
- 10. Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol. Behav. 2007; 92(1): 263-271.
- 11. Woods JS and Leibowitz SF. Hypothalamic sites sensitive to morphine and naloxone: Effects on feeding behavior. Pharmacol. Biochem. Behav. 1985; 23(3): 431-438.
- 12. Calderwood MT, Tseng A, Gabriella I, and Stanley BG. Feeding behavior elicited by mu opioid and GABA receptor activation in the lateral septum. Pharmacol. Biochem. Behav. 2022; 217: 173395.
- 13. Calderwood MT, Tseng A and Stanley BG. Lateral septum mu opioid receptors in stimulation of feeding. Brain Res. 2020; 1734: 146648.
- 14. Ardianto C, Yonemochi N, Yamamoto S, Yang L, Takenoya F, Shioda S, et al. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neurosci. 2016; 320: 183-193.
- 15. Sayar-Atasoy N, Aklan I, Yavuz Y, Laule C, Kim H, Rysted J, et al. AgRP neurons encode circadian feeding time. Nat. Neurosci. 2024; 27(1): 102-115.
- 16. Hanson ES, Dallman MF. Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamo‐pituitary‐adrenal axis. J. Neuroendocrinol. 1995; 7(4): 273-279.
- 17. Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, et al. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol. Metab. 2024; 82: 101904.
- 18. Sakurai T. Orexins and orexin receptors: implication in feeding behavior. Regul. Pept. 1999; 85(1): 25-30.
- 19. Bates SH, Myers MG. The role of leptin receptor signaling in feeding and neuroendocrine function. TEM. 2003; 14(10): 447-452.
- 20. Amleshi RS, Soltaninejad M, Ilaghi M. Potential involvement of apelin/APJ system in addiction and neuroprotection against drugs of abuse. AHJ. 2024; 16(3): 198.
- 21. Will M, Franzblau E, Kelley A. Nucleus accumbens μ-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J. Neurosci. 2003; 23(7): 2882-2888.
- 22. Zhong YJ, Feng Z, Wang L, Wei TQ. Wake-promoting actions of median nerve stimulation in TBI-induced coma: an investigation of orexin-A and orexin receptor 1 in the hypothalamic region. Mol. Med. Rep. 2015; 12(3): 4441-4447.
- 23. Sayar-Atasoy N, Yavuz Y, Laule C, Dong C, Kim H, Rysted J, et al. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons. Cell Rep. 2024; 43(1).
- 24. Mena JD, Sadeghian K, Baldo BA. Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex. J. Neurosci. 2011; 31(9): 3249-3260.
- 25. Perry ML, Pratt WE, Baldo BA. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat. Psychopharmacology. 2014; 231: 919-928.
- 26. Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, et al. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J. Neurosci. 2015; 35(9): 3959-3965.
- 27. Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacol. 2017; 42(5): 1169-1177.
- 28. Nogueiras R, Tschöp MH, Zigman JM. Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann. N. Y. Acad. Sci. 2008; 1126(1): 14-19.
- 29. Chen H, Trumbauer M, Chen A, Weingarth D, Adams J, Frazier E, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004; 145(6): 2607-2612.
- 30. Cone RD. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 2005; 8(5): 571-578.
- 31. Israel Y, Kandov Y, Khaimova E, Kest A, Lewis S, Pasternak G, et al. NPY-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides. 2005; 26(7): 1167-1175.
- 32. Wardlaw SL, Kim J and Sobieszczyk S. Effect of morphine on proopiomelanocortin gene expression and peptide levels in the hypothalamus. Mol Brain Res. 1996; 41(1-2): 140-147.
- 33. Ma X, Zubcevic L, Brüning JC, Ashcroft FM, and Burdakov D. Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J. Neurosci. 2007; 27(7): 1529-1533.
- 34. Marcus JN, Elmquist JK, Orexin projections and localization of orexin receptors, in The orexin/hypocretin system: physiology and pathophysiology. 2006, Springer. p. 21-43.
- 35. Bäckberg M, Hervieu G, Wilson S, Meister B. Orexin receptor‐1 (OX‐R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur. J. Neurosci. 2002; 15(2): 315-328.
- 36. Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, et al. Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology. 2001; 153: 210-218.
- 37. Friedman JM. Leptin at 14 y of age: an ongoing story. AJCN. 2009; 89(3): 973S-979S.
- 38. Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, DI NISIO C, et al. Central apelin-13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents. 2016; 30(3): 883-888.
- 39. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbæk C, et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999; 23(4): 775-786.
- 40. Yildiz I, Cimen YA, Eroglu C, Ozkurkculer A, Kurar E, and Kutlu S. Effect of morphine dependency on apelinergic system in rat hippocampus. in Acta Physiologica. 2022. Wiley 111 River St, Hoboken 07030-5774, NJ USA.
Hipotalamik Beslenmenin Düzenlenmesinde Rol Oynayan Nöropeptid Gen Ekspresyon Düzeyleri Üzerinde Mu Opioid Agonistik Etkisi
Year 2025,
Volume: 6 Issue: 1, 1 - 7, 31.01.2025
Fatma Bedia Karakaya Cimen
,
Zeliha Erkaya Turan
,
Aysu Sen
,
Kaniye Zeynep Caliskan Sak
,
Canan Eroglu Günes
,
Ercan Kurar
,
Yasin Ali Cimen
,
Selim Kutlu
Abstract
Arkaplan: Gıda alımının düzenlenmesi hipotalamusta çeşitli nöroendokrin mekanizmaların entegrasyonu yoluyla gerçekleşir. Bu bölgede oreksijenik ve anoreksijenik peptidler farklı uyaranlara yanıt vererek rol oynar. Ek olarak, merkezi opioiderjik sistemler beslenme davranışının düzenlenmesinde rol oynar. Nöropeptitler hipotalamusta eksprese edilen moleküllerdir ve gıda alımının düzenlenmesine de katkıda bulunurlar. Bu çalışmanın amacı, mu opioiderjik agonist/antagonist moleküllerin hipotalamusta hem oreksijenik hem de anoreksijenik peptitler üzerindeki etkilerini araştırmaktır.
Yöntemler: Çalışmamızda 48 erkek Wistar albino sıçan kontrol, morfin, nalokson ve morfin+nalokson olmak üzere 4 gruba ayrıldı. Kontrol grubuna 5 gün boyunca subkutan SF solüsyonu; morfin grubuna 5 gün boyunca 10 mg/kg/gün dozunda morfin; nalokson grubuna 5 gün boyunca SF ve son enjeksiyondan 1,5 saat sonra 3 mg/kg dozunda nalokson; morfin+nalokson grubuna 5 gün boyunca morfin enjeksiyonundan 1,5 saat sonra nalokson uygulandı. Deneklerin başları kesilmiş ve hipotalamus dokuları nazikçe çıkarılmıştır. Anoreksijenik ve oreksijenik peptid ekspresyon düzeyleri RT-PCR yöntemi ile analiz edildi.
Sonuçlar: Morfin uygulaması OX2R ve LepR genlerinin ekspresyon seviyelerinde azalmaya neden olurken, ORXA, OX1R, AgRP, NPY, POMC gen ekspresyonunu önemli ölçüde değiştirmedi. Nalokson uygulaması AgRP ve NPY ekspresyonunu artırırken OX2R, LepR ve APLNR gen ekspresyon düzeylerini azaltmıştır.
Sonuçlar: Bu bulgular morfinin hipotalamusta beslenme ve metabolizma ile ilgili moleküllerin gen ekspresyonunu çeşitli düzeylerde etkileyebileceğini göstermektedir.
Ethical Statement
Bu proje Necmettin Erbakan Üniversitesi Deney Hayvanları Yerel Etik Kurulu tarafından onaylanmıştır (Proje Numarası: 2023-041)
Supporting Institution
Bu çalışma Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 23YL18003 numaralı proje ile desteklenmiştir.
Thanks
Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Ofisine desteklerinden dolayı teşekkür ederiz.
References
- 1. Cimen YA, Ozdengul F, Eroglu Gunes C, Kurar E, Solak Gormus ZI, Caliskan Sak KZ et al. Investigation of Melatonin Receptors Gene Expression Levels in the Hippocampus and Hypothalamus in Rats with an Experimental Morphine Dependence Model. Ann Med Res. 2024;31(10):860-864.
- 2. Desjardins GC, Brawer JR and Beaudet A. Distribution of μ, δ and κ opioid receptors in the hypothalamus of the rat. Brain Res. 1990; 536(1-2): 114-123.
- 3. Cox BM. Recent developments in the study of opioid receptors. Mol. Pharmacol. 2013; 83(4): 723-728.
- 4. Gosnell B and Levine A. Reward systems and food intake: role of opioids. IJO. 2009; 33(2): S54-S58.
- 5. Volkow ND and McLellan AT. Opioid abuse in chronic pain—misconceptions and mitigation strategies. NEJM. 2016; 374(13): 1253-1263.
- 6. Schulteis G, Heyser CJ and Koob GF. Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: potentiation with a second morphine exposure. Psychopharmacology. 1997; 129: 56-65.
7. Bodnar RJ. Endogenous opiates and behavior: 2006. Peptides. 2007; 28(12): 2435-2513.
- 8. Stanley BG, Lanthier D and Leibowitz SF. Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol. Biochem. Behav. 1988; 31(4): 825-832.
- 9. Calderwood MT, Tseng A and Glenn Stanley B. Lateral septum mu opioid receptors in stimulation of feeding. Brain Res. 2020; 1734: 146648.
- 10. Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol. Behav. 2007; 92(1): 263-271.
- 11. Woods JS and Leibowitz SF. Hypothalamic sites sensitive to morphine and naloxone: Effects on feeding behavior. Pharmacol. Biochem. Behav. 1985; 23(3): 431-438.
- 12. Calderwood MT, Tseng A, Gabriella I, and Stanley BG. Feeding behavior elicited by mu opioid and GABA receptor activation in the lateral septum. Pharmacol. Biochem. Behav. 2022; 217: 173395.
- 13. Calderwood MT, Tseng A and Stanley BG. Lateral septum mu opioid receptors in stimulation of feeding. Brain Res. 2020; 1734: 146648.
- 14. Ardianto C, Yonemochi N, Yamamoto S, Yang L, Takenoya F, Shioda S, et al. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neurosci. 2016; 320: 183-193.
- 15. Sayar-Atasoy N, Aklan I, Yavuz Y, Laule C, Kim H, Rysted J, et al. AgRP neurons encode circadian feeding time. Nat. Neurosci. 2024; 27(1): 102-115.
- 16. Hanson ES, Dallman MF. Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamo‐pituitary‐adrenal axis. J. Neuroendocrinol. 1995; 7(4): 273-279.
- 17. Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, et al. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol. Metab. 2024; 82: 101904.
- 18. Sakurai T. Orexins and orexin receptors: implication in feeding behavior. Regul. Pept. 1999; 85(1): 25-30.
- 19. Bates SH, Myers MG. The role of leptin receptor signaling in feeding and neuroendocrine function. TEM. 2003; 14(10): 447-452.
- 20. Amleshi RS, Soltaninejad M, Ilaghi M. Potential involvement of apelin/APJ system in addiction and neuroprotection against drugs of abuse. AHJ. 2024; 16(3): 198.
- 21. Will M, Franzblau E, Kelley A. Nucleus accumbens μ-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J. Neurosci. 2003; 23(7): 2882-2888.
- 22. Zhong YJ, Feng Z, Wang L, Wei TQ. Wake-promoting actions of median nerve stimulation in TBI-induced coma: an investigation of orexin-A and orexin receptor 1 in the hypothalamic region. Mol. Med. Rep. 2015; 12(3): 4441-4447.
- 23. Sayar-Atasoy N, Yavuz Y, Laule C, Dong C, Kim H, Rysted J, et al. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons. Cell Rep. 2024; 43(1).
- 24. Mena JD, Sadeghian K, Baldo BA. Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex. J. Neurosci. 2011; 31(9): 3249-3260.
- 25. Perry ML, Pratt WE, Baldo BA. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat. Psychopharmacology. 2014; 231: 919-928.
- 26. Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, et al. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J. Neurosci. 2015; 35(9): 3959-3965.
- 27. Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacol. 2017; 42(5): 1169-1177.
- 28. Nogueiras R, Tschöp MH, Zigman JM. Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann. N. Y. Acad. Sci. 2008; 1126(1): 14-19.
- 29. Chen H, Trumbauer M, Chen A, Weingarth D, Adams J, Frazier E, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004; 145(6): 2607-2612.
- 30. Cone RD. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 2005; 8(5): 571-578.
- 31. Israel Y, Kandov Y, Khaimova E, Kest A, Lewis S, Pasternak G, et al. NPY-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides. 2005; 26(7): 1167-1175.
- 32. Wardlaw SL, Kim J and Sobieszczyk S. Effect of morphine on proopiomelanocortin gene expression and peptide levels in the hypothalamus. Mol Brain Res. 1996; 41(1-2): 140-147.
- 33. Ma X, Zubcevic L, Brüning JC, Ashcroft FM, and Burdakov D. Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J. Neurosci. 2007; 27(7): 1529-1533.
- 34. Marcus JN, Elmquist JK, Orexin projections and localization of orexin receptors, in The orexin/hypocretin system: physiology and pathophysiology. 2006, Springer. p. 21-43.
- 35. Bäckberg M, Hervieu G, Wilson S, Meister B. Orexin receptor‐1 (OX‐R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur. J. Neurosci. 2002; 15(2): 315-328.
- 36. Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, et al. Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology. 2001; 153: 210-218.
- 37. Friedman JM. Leptin at 14 y of age: an ongoing story. AJCN. 2009; 89(3): 973S-979S.
- 38. Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, DI NISIO C, et al. Central apelin-13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents. 2016; 30(3): 883-888.
- 39. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbæk C, et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999; 23(4): 775-786.
- 40. Yildiz I, Cimen YA, Eroglu C, Ozkurkculer A, Kurar E, and Kutlu S. Effect of morphine dependency on apelinergic system in rat hippocampus. in Acta Physiologica. 2022. Wiley 111 River St, Hoboken 07030-5774, NJ USA.