Review
BibTex RIS Cite

Genomic Sequencing in Precision Medicine: Applications, Interpretation and Limitations

Year 2025, Volume: 6 Issue: 2, 71 - 76, 20.05.2025
https://doi.org/10.47482/acmr.1627345

Abstract

Genomic sequencing (GS) has become a cornerstone in precision medicine (PM), facilitating the identification of genetic variants linked to disease susceptibility, diagnosis, and treatment customization. Leveraging next-generation sequencing technologies, including whole-exome sequencing (WES) and whole-genome sequencing (WGS), GS provides unparalleled insights into genetic underpinnings of rare diseases, cancers, and multifactorial conditions. WES focuses on protein-coding regions, efficiently identifying pathogenic variants, while WGS offers comprehensive genomic coverage, enabling the detection of structural and non-coding variants. Despite its transformative potential, GS faces limitations such as variant interpretation challenges, lack of exhaustive annotation for non-coding regions, and variability in clinical significance assessment. The integration of variant databases like ClinVar and GnomAD, alongside machine learning-driven annotation, has improved variant prioritization and clinical applicability. However, the implementation of GS in clinical practice remains hampered by knowledge gaps among healthcare providers and inconsistencies in defining actionable mutations. Emerging techniques such as spatial transcriptomics and single-cell genomics, coupled with multi-omics data integration, promise to address these challenges, enhancing the precision and utility of GS in PM. This review highlights GS's clinical applications, including early disease risk detection, targeted therapeutics, and oncogenomic advancements, while addressing its interpretive and operational barriers. Future directions emphasize technology innovations and interdisciplinary strategies to maximize GS's clinical impact, positioning it as a critical tool in the era of personalized healthcare.

Ethical Statement

Ethical approval was not required for this study as it is a review article that does not involve human participants, animals, or sensitive data.

Supporting Institution

This review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Thanks

There are no acknowledgements.

References

  • Muharremi G, Meçani R, Muka T. The buzz surrounding precision medicine: The imperative of incorporating it into evidence-based medical practice. Journal of Personalized Medicine. 2023 Dec 29;14(1):53.
  • Brittain HK, Scott R, Thomas E. The rise of the genome and personalised medicine. Clinical Medicine. 2017 Dec;17(6):545–51.
  • Phillips KA, Trosman JR, Kelley RK, Pletcher MJ, Douglas MP, Weldon CB. Genomic sequencing: Assessing the health care system, policy, and big-data implications. Health Affairs. 2014 Jul;33(7):1246–53.
  • Costain G, Cohn RD, Scherer SW, Marshall CR. Genome sequencing as a diagnostic test. Canadian Medical Association Journal. 2021 Oct 24;193(42):E1626–9.
  • Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-generation sequencing technology: Current Trends and Advancements. Biology. 2023 Jul 13;12(7):997.
  • Posey JE. Genome sequencing and implications for rare disorders. Orphanet Journal of Rare Diseases. 2019 Jun 24;14(1).
  • Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, et al. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genetics in Medicine. 2017 May;19(5):593–8.
  • Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nature Reviews Genetics. 2020 Jun 5;21(10):597–614.
  • Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Human Genetics. 2016 Jan 7;135(3):359–62.
  • Banck H, Dugas M, Müller-Tidow C, Sandmann S. Comparison of open-access databases for clinical variant interpretation in cancer: A Case study of MDS/AML. Cancer Genomics - Proteomics. 2021 Feb 19;18(2):157–66.
  • Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, et al. Whole genome sequencing in clinical practice. BMC Medical Genomics. 2024 Jan 29;17(1).
  • Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, et al. Implementing whole genome sequencing (WGS) in clinical practice: advantages, challenges, and future perspectives. Cells. 2024 Mar 13;13(6):504.
  • Gudmundsson S, Singer‐Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, et al. Variant interpretation using population databases: Lessons from gnomAD. Human Mutation. 2021 Dec 16;43(8):1012–30.
  • Garcia FA de O, Andrade ES de, Palmero EI. Insights on variant analysis in silico tools for pathogenicity prediction. Frontiers in Genetics. 2022 Nov 29;13.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015 May;17(5):405–24.
  • Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, et al. Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine. 2016 Jan 20;8(322).
  • Masson E, Zou WB, Génin E, Cooper DN, Le Gac G, Fichou Y, et al. Expanding ACMG variant classification guidelines into a general framework. Human Genomics. 2022 Aug 16;16(1).
  • Houge G, Laner A, Cirak S, de Leeuw N, Scheffer H, den Dunnen JT. Stepwise ABC system for classification of any type of genetic variant. European Journal of Human Genetics. 2021 May 13;30(2):150–9.
  • Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014 Nov 12;312(18):1870.
  • Dillon OJ, Lunke S, Stark Z, Yeung A, Thorne N, Gaff C, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics. 2018 Feb 16;26(5):644–51.
  • Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genetics in Medicine. 2015 Jul;17(7):578–86.
  • Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA. 2014 Nov 12;312(18):1880.
  • Walsh M, Bell KM, Chong B, Creed E, Brett GR, Pope K, et al. Diagnostic and cost utility of whole exome sequencing in peripheral neuropathy. Annals of Clinical and Translational Neurology. 2017 Apr 26;4(5):318–25.
  • Kiiski JI, Pelttari LM, Khan S, Freysteinsdottir ES, Reynisdottir I, Hart SN, et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proceedings of the National Academy of Sciences. 2014 Oct 6;111(42):15172–7.
  • Noh JM, Kim J, Cho DY, Choi DH, Park W, Huh SJ. Exome sequencing in a breast cancer family withoutBRCAmutation. Radiation Oncology Journal. 2015;33(2):149.
  • Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CK, Sapino A, et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. The Journal of Pathology. 2014 Dec 22;235(4):571–80.
  • Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biology. 2017 Apr 27;18(1).
  • Määttä K, Rantapero T, Lindström A, Nykter M, Kankuri-Tammilehto M, Laasanen SL, et al. Whole-exome sequencing of Finnish hereditary breast cancer families. European Journal of Human Genetics. 2016 Oct 26;25(1):85–93.
  • Green R, Shah N, Genetti C, Yu T, Zettler B, Schwartz T, et al. Medical evaluation of unanticipated monogenic disease risks identified through newborn genomic screening: Findings from the BabySeq project [Internet]. Research Square Platform LLC; 2022 Mar [cited 2024 Dec 12]. Available from: https://doi.org/10.21203/rs.3.rs-1443399/v1
  • Ma R, Gong J, Jiang X. Novel applications of next-generation sequencing in breast cancer research. Genes and Diseases. 2017 Jul 18;4(3):149-153.
  • Alfares A, Aloraini T, subaie LA, Alissa A, Qudsi AA, Alahmad A, et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genetics in Medicine. 2018 Nov;20(11):1328–33.
  • Vassy JL, Christensen KD, Schonman EF, Blout CL, Robinson JO, Krier JB, et al. The impact of whole-genome sequencing on the primary care and outcomes of healthy adult patients. Annals of Internal Medicine. 2017 Jun 27;167(3):159.
  • Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The role of next-generation sequencing in precision medicine: A review of outcomes in oncology [Internet]. MDPI AG; 2018 Jul [cited 2024 Dec 12]. Available from: https://doi.org/10.20944/preprints201807.0071.v1
  • Radovich M, Kiel PJ, Nance SM, Niland EE, Parsley ME, Ferguson ME, et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget. 2016 Jul 15;7(35):56491–500.
  • Shigemizu D, Asanomi Y, Akiyama S, Mitsumori R, Niida S, Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease. Molecular Psychiatry. 2022 Mar 10;27(5):2554–62.
  • Acar IE, Galesloot TE, Luhmann UFO, Fauser S, Gayán J, den Hollander AI, et al. Whole Genome Sequencing Identifies Novel Common and Low-Frequency Variants Associated With Age-Related Macular Degeneration. Investigative Opthalmology and Visual Science. 2023 Nov 17;64(14):24.
  • West H (Jack). No solid evidence, oOnly hollow argument for universal tumor sequencing. JAMA Oncology. 2016 Jun 1;2(6):717.
  • Bryce AH, Egan JB, Borad MJ, Stewart AK, Nowakowski GS, Chanan-Khan A, et al. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery. Oncotarget. 2017 Mar 9;8(16):27145–54.
  • Nomura S. Single-cell genomics to understand disease pathogenesis. Journal of Human Genetics. 2020 Sep 19;66(1):75–84.
  • Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an organ’s molecular architecture at single-cell rResolution by spatially resolved transcriptomics. Trends in Biotechnology. 2021 Jan;39(1):43–58.
  • Conesa A, Beck S. Making multi-omics data accessible to researchers. Scientific Data. 2019 Oct 31;6(1).
  • Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal. 2021; 19:3735–46.

Hassas Tıpta Genomik Dizileme: Uygulamalar, Yorumlama ve Sınırlamalar

Year 2025, Volume: 6 Issue: 2, 71 - 76, 20.05.2025
https://doi.org/10.47482/acmr.1627345

Abstract

Genomik dizileme (GS), hassas tıpta (PM) temel bir taş haline gelerek hastalık duyarlılığı, tanı ve
tedavi özelleştirmesiyle bağlantılı genetik varyantların tanımlanmasını kolaylaştırmaktadır. Tüm
ekzom dizileme (WES) ve tüm genom dizileme (WGS) dahil olmak üzere yeni nesil dizileme
teknolojilerinden yararlanan GS, nadir hastalıkların, kanserlerin ve çok faktörlü durumların
genetik temellerine dair eşsiz içgörüler sağlar. WES, patojenik varyantları etkili bir şekilde
belirleyerek protein kodlayan bölgelere odaklanırken, WGS kapsamlı genomik kapsam sunarak
yapısal ve kodlamayan varyantların tespitini mümkün kılar. Dönüştürücü potansiyeline rağmen
GS, varyant yorumlama zorlukları, kodlamayan bölgeler için kapsamlı açıklama eksikliği ve
klinik önem değerlendirmesinde değişkenlik gibi sınırlamalarla karşı karşıyadır. ClinVar ve
GnomAD gibi varyant veritabanlarının makine öğrenimi odaklı açıklama ile birleştirilmesi,
varyant önceliklendirmesini ve klinik uygulanabilirliği iyileştirmiştir. Ancak, GS'nin klinik
uygulamada uygulanması, sağlık hizmeti sağlayıcıları arasındaki bilgi boşlukları ve eyleme
geçirilebilir mutasyonları tanımlamadaki tutarsızlıklar nedeniyle engellenmeye devam ediyor.
Çoklu omik veri entegrasyonu ile birleştirilmiş mekansal transkriptomik ve tek hücreli genomik
gibi ortaya çıkan teknikler, bu zorlukları ele alarak GS'nin PM'deki hassasiyetini ve faydasını
artırmayı vaat ediyor. Bu inceleme, erken hastalık riski tespiti, hedefli terapötikler ve
onkogenomik ilerlemeler dahil olmak üzere GS'nin klinik uygulamalarını vurgularken,
yorumlayıcı ve operasyonel engellerini de ele alıyor. Gelecekteki yönler, GS'nin klinik etkisini en
üst düzeye çıkarmak için teknoloji yeniliklerini ve disiplinler arası stratejileri vurgulayarak, onu
kişiselleştirilmiş sağlık hizmeti çağında kritik bir araç olarak konumlandırıyor.

References

  • Muharremi G, Meçani R, Muka T. The buzz surrounding precision medicine: The imperative of incorporating it into evidence-based medical practice. Journal of Personalized Medicine. 2023 Dec 29;14(1):53.
  • Brittain HK, Scott R, Thomas E. The rise of the genome and personalised medicine. Clinical Medicine. 2017 Dec;17(6):545–51.
  • Phillips KA, Trosman JR, Kelley RK, Pletcher MJ, Douglas MP, Weldon CB. Genomic sequencing: Assessing the health care system, policy, and big-data implications. Health Affairs. 2014 Jul;33(7):1246–53.
  • Costain G, Cohn RD, Scherer SW, Marshall CR. Genome sequencing as a diagnostic test. Canadian Medical Association Journal. 2021 Oct 24;193(42):E1626–9.
  • Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-generation sequencing technology: Current Trends and Advancements. Biology. 2023 Jul 13;12(7):997.
  • Posey JE. Genome sequencing and implications for rare disorders. Orphanet Journal of Rare Diseases. 2019 Jun 24;14(1).
  • Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, et al. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genetics in Medicine. 2017 May;19(5):593–8.
  • Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nature Reviews Genetics. 2020 Jun 5;21(10):597–614.
  • Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Human Genetics. 2016 Jan 7;135(3):359–62.
  • Banck H, Dugas M, Müller-Tidow C, Sandmann S. Comparison of open-access databases for clinical variant interpretation in cancer: A Case study of MDS/AML. Cancer Genomics - Proteomics. 2021 Feb 19;18(2):157–66.
  • Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, et al. Whole genome sequencing in clinical practice. BMC Medical Genomics. 2024 Jan 29;17(1).
  • Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, et al. Implementing whole genome sequencing (WGS) in clinical practice: advantages, challenges, and future perspectives. Cells. 2024 Mar 13;13(6):504.
  • Gudmundsson S, Singer‐Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, et al. Variant interpretation using population databases: Lessons from gnomAD. Human Mutation. 2021 Dec 16;43(8):1012–30.
  • Garcia FA de O, Andrade ES de, Palmero EI. Insights on variant analysis in silico tools for pathogenicity prediction. Frontiers in Genetics. 2022 Nov 29;13.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015 May;17(5):405–24.
  • Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, et al. Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine. 2016 Jan 20;8(322).
  • Masson E, Zou WB, Génin E, Cooper DN, Le Gac G, Fichou Y, et al. Expanding ACMG variant classification guidelines into a general framework. Human Genomics. 2022 Aug 16;16(1).
  • Houge G, Laner A, Cirak S, de Leeuw N, Scheffer H, den Dunnen JT. Stepwise ABC system for classification of any type of genetic variant. European Journal of Human Genetics. 2021 May 13;30(2):150–9.
  • Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014 Nov 12;312(18):1870.
  • Dillon OJ, Lunke S, Stark Z, Yeung A, Thorne N, Gaff C, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics. 2018 Feb 16;26(5):644–51.
  • Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genetics in Medicine. 2015 Jul;17(7):578–86.
  • Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA. 2014 Nov 12;312(18):1880.
  • Walsh M, Bell KM, Chong B, Creed E, Brett GR, Pope K, et al. Diagnostic and cost utility of whole exome sequencing in peripheral neuropathy. Annals of Clinical and Translational Neurology. 2017 Apr 26;4(5):318–25.
  • Kiiski JI, Pelttari LM, Khan S, Freysteinsdottir ES, Reynisdottir I, Hart SN, et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proceedings of the National Academy of Sciences. 2014 Oct 6;111(42):15172–7.
  • Noh JM, Kim J, Cho DY, Choi DH, Park W, Huh SJ. Exome sequencing in a breast cancer family withoutBRCAmutation. Radiation Oncology Journal. 2015;33(2):149.
  • Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CK, Sapino A, et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. The Journal of Pathology. 2014 Dec 22;235(4):571–80.
  • Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biology. 2017 Apr 27;18(1).
  • Määttä K, Rantapero T, Lindström A, Nykter M, Kankuri-Tammilehto M, Laasanen SL, et al. Whole-exome sequencing of Finnish hereditary breast cancer families. European Journal of Human Genetics. 2016 Oct 26;25(1):85–93.
  • Green R, Shah N, Genetti C, Yu T, Zettler B, Schwartz T, et al. Medical evaluation of unanticipated monogenic disease risks identified through newborn genomic screening: Findings from the BabySeq project [Internet]. Research Square Platform LLC; 2022 Mar [cited 2024 Dec 12]. Available from: https://doi.org/10.21203/rs.3.rs-1443399/v1
  • Ma R, Gong J, Jiang X. Novel applications of next-generation sequencing in breast cancer research. Genes and Diseases. 2017 Jul 18;4(3):149-153.
  • Alfares A, Aloraini T, subaie LA, Alissa A, Qudsi AA, Alahmad A, et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genetics in Medicine. 2018 Nov;20(11):1328–33.
  • Vassy JL, Christensen KD, Schonman EF, Blout CL, Robinson JO, Krier JB, et al. The impact of whole-genome sequencing on the primary care and outcomes of healthy adult patients. Annals of Internal Medicine. 2017 Jun 27;167(3):159.
  • Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The role of next-generation sequencing in precision medicine: A review of outcomes in oncology [Internet]. MDPI AG; 2018 Jul [cited 2024 Dec 12]. Available from: https://doi.org/10.20944/preprints201807.0071.v1
  • Radovich M, Kiel PJ, Nance SM, Niland EE, Parsley ME, Ferguson ME, et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget. 2016 Jul 15;7(35):56491–500.
  • Shigemizu D, Asanomi Y, Akiyama S, Mitsumori R, Niida S, Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease. Molecular Psychiatry. 2022 Mar 10;27(5):2554–62.
  • Acar IE, Galesloot TE, Luhmann UFO, Fauser S, Gayán J, den Hollander AI, et al. Whole Genome Sequencing Identifies Novel Common and Low-Frequency Variants Associated With Age-Related Macular Degeneration. Investigative Opthalmology and Visual Science. 2023 Nov 17;64(14):24.
  • West H (Jack). No solid evidence, oOnly hollow argument for universal tumor sequencing. JAMA Oncology. 2016 Jun 1;2(6):717.
  • Bryce AH, Egan JB, Borad MJ, Stewart AK, Nowakowski GS, Chanan-Khan A, et al. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery. Oncotarget. 2017 Mar 9;8(16):27145–54.
  • Nomura S. Single-cell genomics to understand disease pathogenesis. Journal of Human Genetics. 2020 Sep 19;66(1):75–84.
  • Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an organ’s molecular architecture at single-cell rResolution by spatially resolved transcriptomics. Trends in Biotechnology. 2021 Jan;39(1):43–58.
  • Conesa A, Beck S. Making multi-omics data accessible to researchers. Scientific Data. 2019 Oct 31;6(1).
  • Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal. 2021; 19:3735–46.
There are 42 citations in total.

Details

Primary Language English
Subjects Medical Genetics (Excl. Cancer Genetics)
Journal Section REVIEW ARTICLE
Authors

Marvellous Oyebanjo 0000-0002-0175-7916

Godswill Arinzechukwu Iwuchukwu 0009-0001-3621-7055

Publication Date May 20, 2025
Submission Date January 26, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Oyebanjo, M., & Iwuchukwu, G. A. (2025). Genomic Sequencing in Precision Medicine: Applications, Interpretation and Limitations. Archives of Current Medical Research, 6(2), 71-76. https://doi.org/10.47482/acmr.1627345

Archives of Current Medical Research (ACMR) provides instant open access to all content, bearing in mind the fact that presenting research

free to the public supports a greater global exchange of knowledge.

http://www.acmronline.org/