Research Article
BibTex RIS Cite

Gadobutrol'ün mcf-7 hücre hattı üzerinde in vitro sitogenotoksik değerlendirmesi ve hesaplamalı moleküler doklama analizi

Year 2025, Volume: 6 Issue: 3, 226 - 234, 28.09.2025
https://doi.org/10.47482/acmr.1643905

Abstract

Arka plan: Gadobutrol, iyonik olmayan, makrosiklik sert bir şelat kompleksine bağlı, termodinamik stabiliteye sahip, suda yüksek oranda çözünebilen, hidrofilik gadolinyum bazlı bir kontrast ajandır. Bu çalışmanın amacı, dünya çapında yaygın olarak kullanılan gadobutrolün mcf-7 hücrelerindeki olası genositotoksik etkilerini değerlendirmektir. Ayrıca, gadobutrolün B-DNA ile etkileşim enerji seviyesi moleküler yerleştirme kullanılarak in silico olarak değerlendirilmiştir.
Gereç ve Yöntemler: Gadobutrol (0.1 mM, 1 mM, 10 mM ve 100 mM) mcf-7 hücrelerine uygulanmış ve hücre canlılığındaki azalma ve IC 50 dozu 3-(4,5-dimetiltiyazol-2-il)-5-(3-karboksimetoksifenil)-2-(4-sülfofenil)-2H-tetrazolyum (MTS) yöntemi ile değerlendirilmiştir. Gadobutrolün IC 50 değerleri (3.31 mM, 6.63 mM, 13.27 mM ve 26.54 mM) belirlendikten sonra, gadobutrolün mcf-7 hücreleri üzerindeki genotoksik etkileri Comet testi kullanılarak incelenmiştir. Ayrıca, B-DNA molekülünün kristal yapılarında gadobutrolün olası etkileşimini tahmin etmek için Schrödinger Maestro 13.9 kullanılarak bir moleküler yerleştirme deneyi gerçekleştirilmiştir.
Sonuçlar: Gadobutrolün tüm konsantrasyonları mcf-7 hücrelerinde genotoksik etki açısından istatistiksel olarak anlamlı bir değişikliğe neden olmamıştır. Ancak mts için uygulanan tüm konsantrasyonlar mcf-7 hücrelerinde hücre canlılığını istatistiksel olarak anlamlı şekilde azaltmıştır (sırasıyla p < 0.01 ve p < 0.0001). In slico analiz sonuçlarına göre; Gadobutrol DNA'nın minör oluğunda yer almaktadır. Molekülün hidroksil grupları ile DNA bazları arasında hidrojen bağları oluşmuş ve serbest bağlanma enerjisi -6.14 kcal/mol olarak belirlenmiştir.
Sonuçlar: İn vitro koşullarda gerçekleştirilen çalışmanın sonuçlarına göre MR görüntülemede kullanılan gadobutrolün genotoksik etki göstermediği ancak hücre canlılığını istatistiksel olarak azalttığı belirlenmiştir. Ayrıca gadobutrolün B-DNA ile etkileşimi MCF-7 hücrelerini apoptoza sürükleyebileceğini düşündürmüştür. Gadobutrolün MCF-7 hücrelerindeki sitogenotoksik etkisi, meme kanseri tedavisi için umut verici yeni bir stratejiye işaret edebilir.

Ethical Statement

Etik kurul izni gerekmemektedir

References

  • Hill MA. Cardiac MR imaging genotoxicity? Eur Heart J. 2018;39(4):313-5.
  • Simi S, Ballardin M, Casella M, De Marchi D, Hartwig V, Giovannetti G, et al. Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res. 2008;645(1-2):39-43.
  • Bilgin B, Adam M, Hekim MG, Bulut F, Ozcan M. Gadolinium-based contrast agents aggravate mechanical and thermal hyperalgesia in a nitroglycerine-induced migraine model in male mice. J Magn Reson Imaging. 2024;111:67-73.
  • Alvares RDA, Szulc DA, Cheng HL. A scale to measure MRI contrast agent sensitivity. Sci Rep. 2017;7(1):15493. Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. Journal of J Magn Reson Imaging. 1999;10(3):477-84.
  • Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging. 2017;46(2):338-53.
  • Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med. 2016;38(5):1319-26.
  • Iyad N, M SA, Alkhatib SG, Hjouj M. Gadolinium contrast agents—challenges and opportunities of a multidisciplinary approach: Literature review. Eur J Radiol Open. 2023;11:100503.
  • Wack C, Steger-Hartmann T, Mylecraine L, Hofmeister R. Toxicological safety evaluation of gadobutrol. Invest Radiol. 2012;47(11):611-23.
  • Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40(11):715-24.
  • Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060-71.
  • Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J. 2013;34(30):2340-5.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.
  • Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74(2-3):172-83.
  • Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015;574(2):193-203.
  • Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb). 2021;10(1):68-78.
  • Lu Y, Liu Y, Yang C. Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp. 2017(128).
  • Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273-343.
  • Jain AN, Nicholls A. Recommendations for evaluation of computational methods. J Comput Aided Mol Des. 2008;22(3-4):133-9.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-91.
  • Kenger İH, Yıldız H, Hüsunet MT, Dönbak L, Kayraldız A. Elucidation of the cytogenotoxic potential of vigabatrin and its in silico computer-assisted DNA interaction. Drug Chem Toxicol. 2024;47(3):314-21.
  • Afanamol MS, Dinesh AD, Ali KS, Vengamthodi A, Rasheed A. Drug repurposing by in silico prediction of cyclizine derivatives as antihyperlipemic agents. In Silico Pharmacol. 2023;11(1):27.
  • Bhuvaneswari S, Umadevi M, Vanajothi R. Effects on anti-inflammatory, DNA binding and molecular docking properties of 2-chloroquinolin-3-yl-methylene-pyridine/pyrazole derivatives and their palladium (II) complexes. Bioorg Med Chem Lett. 2020;30(21):127593.
  • Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol. 2021;35(3):e22674.
  • Shityakov S, Forster C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv Appl Bioinform Chem. 2014;7:23-36.
  • Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018;2018(6). van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45.
  • Marshall N, Goodwin C, Holt S. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995;5(2):69-84.
  • Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996;4(1):14-9.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005-28.
  • Feng X, Xia Q, Yuan L, Yang X, Wang K. Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. Neurotoxicology. 2010;31(4):391-8.
  • Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol. 2022;96(2):403-29.
  • Mlinar B, Enyeart JJ. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol. 1993;469:639-52.
  • Green C, Jost G, Frenzel T, Boyken J, Schwenke C, Pietsch H. The Effect of Gadolinium-Based Contrast Agents on Longitudinal Changes of Magnetic Resonance Imaging Signal Intensities and Relaxation Times in the Aging Rat Brain. Invest Radiol. 2022;57(7):453-62.
  • Xia Q, Feng X, Huang H, Du L, Yang X, Wang K. Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem. 2011;117(1):38-47.
  • Erdogan MA, Apaydin M, Armagan G, Taskiran D. Evaluation of toxicity of gadolinium-based contrast agents on neuronal cells. Acta Radiol. 2021;62(2):206-14.
  • Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol. 2022;45(6):2471-82.
  • Çobanoğlu H. Gadobutrol’un Sitokinezi Bloke Edilmiş Mikronükleus Tekniği ile Genotoksik ve Sitotoksik Potansiyelinin Değerlendirilmesi. Afyon Kocatepe University Journal of Sciences and Engineering. 2021;21(3):532-7.
  • Liao W, McNutt MA, Zhu WG. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009;48(1):46-53.
  • Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol. 2006;314:275-86.
  • Lee RF, Steinert S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res. 2003;544(1):43-64.
  • Magdalou I, Lopez BS, Pasero P, Lambert SA. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Biol. 2014;30:154-64.
  • Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16(1):2-9.
  • Özcan O, Erdal H, Çakırca G, Yönden Z. Oxidative stress and its impacts on intracellular lipids, proteins and DNA. J Clin Exp Investig. 2015;6(3):331-36.

In vitro cytogenotoxic evaluation of gadobutrol on mcf-7 cell line and computational molecular docking analysis

Year 2025, Volume: 6 Issue: 3, 226 - 234, 28.09.2025
https://doi.org/10.47482/acmr.1643905

Abstract

Background: Gadobutrol (Gd) is a highly water-soluble, hydrophilic gadolinium-based (Gd-based) contrast agent with thermodynamic stability, bound to a non-ionic, macrocyclic hard chelate complex. The aim of this study was to evaluate the possible genocytotoxic effects of gadobutrol, which is widely used worldwide, in breast cancer cells (MCF-7). Furthermore, the interaction energy level of gadobutrol with B-DNA was evaluated in silico using molecular docking.
Methods: Gadobutrol (0.1 mM, 1 mM, 10 mM and 100 mM) was applied to MCF-7 cells and the decrease in cell viability and IC 50 dose were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) method. After determining the IC 50 values of gadobutrol (3.31 mM, 6.63 mM, 13.27 mM and 26.54 mM), the genotoxic effects of gadobutrol on MCF-7 cells were examined using Comet assay. Furthermore, a molecular docking experiment was performed using Schrödinger Maestro 13.9 to predict the possible interaction of gadobutrol in the crystal structures of the B-DNA molecule.
Results: All concentrations of gadobutrol did not cause a statistically significant change in terms of genotoxic effect in MCF-7 cells (ns p > 0.05). However, all concentrations applied for MTS statistically significantly decreased cell viability in MCF-7 cells (**p < 0.01 and ****p < 0.0001, respectively). According to the results of in silico analysis; Gadobutrol is located in the minor groove of DNA. Hydrogen bonds were formed between the hydroxyl groups of the molecule and DNA bases and the free binding energy was determined as -6.14 kcal/mol.
Conclusions: According to the results of the study carried out under in vitro conditions, it was determined that gadobutrol
used in MRI imaging did not show genotoxic effects but statistically decreased cell viability. In addition, the interaction
of gadobutrol with B-DNA suggested that it may induce apoptosis in MCF-7 cells. The cytogenotoxic effect of gadobutrol
in MCF-7 cells may indicate a promising new strategy for breast cancer treatment.

Ethical Statement

No ethics committee authorisation required

References

  • Hill MA. Cardiac MR imaging genotoxicity? Eur Heart J. 2018;39(4):313-5.
  • Simi S, Ballardin M, Casella M, De Marchi D, Hartwig V, Giovannetti G, et al. Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res. 2008;645(1-2):39-43.
  • Bilgin B, Adam M, Hekim MG, Bulut F, Ozcan M. Gadolinium-based contrast agents aggravate mechanical and thermal hyperalgesia in a nitroglycerine-induced migraine model in male mice. J Magn Reson Imaging. 2024;111:67-73.
  • Alvares RDA, Szulc DA, Cheng HL. A scale to measure MRI contrast agent sensitivity. Sci Rep. 2017;7(1):15493. Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. Journal of J Magn Reson Imaging. 1999;10(3):477-84.
  • Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging. 2017;46(2):338-53.
  • Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med. 2016;38(5):1319-26.
  • Iyad N, M SA, Alkhatib SG, Hjouj M. Gadolinium contrast agents—challenges and opportunities of a multidisciplinary approach: Literature review. Eur J Radiol Open. 2023;11:100503.
  • Wack C, Steger-Hartmann T, Mylecraine L, Hofmeister R. Toxicological safety evaluation of gadobutrol. Invest Radiol. 2012;47(11):611-23.
  • Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40(11):715-24.
  • Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060-71.
  • Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J. 2013;34(30):2340-5.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.
  • Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74(2-3):172-83.
  • Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015;574(2):193-203.
  • Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb). 2021;10(1):68-78.
  • Lu Y, Liu Y, Yang C. Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp. 2017(128).
  • Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273-343.
  • Jain AN, Nicholls A. Recommendations for evaluation of computational methods. J Comput Aided Mol Des. 2008;22(3-4):133-9.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-91.
  • Kenger İH, Yıldız H, Hüsunet MT, Dönbak L, Kayraldız A. Elucidation of the cytogenotoxic potential of vigabatrin and its in silico computer-assisted DNA interaction. Drug Chem Toxicol. 2024;47(3):314-21.
  • Afanamol MS, Dinesh AD, Ali KS, Vengamthodi A, Rasheed A. Drug repurposing by in silico prediction of cyclizine derivatives as antihyperlipemic agents. In Silico Pharmacol. 2023;11(1):27.
  • Bhuvaneswari S, Umadevi M, Vanajothi R. Effects on anti-inflammatory, DNA binding and molecular docking properties of 2-chloroquinolin-3-yl-methylene-pyridine/pyrazole derivatives and their palladium (II) complexes. Bioorg Med Chem Lett. 2020;30(21):127593.
  • Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol. 2021;35(3):e22674.
  • Shityakov S, Forster C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv Appl Bioinform Chem. 2014;7:23-36.
  • Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018;2018(6). van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45.
  • Marshall N, Goodwin C, Holt S. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995;5(2):69-84.
  • Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996;4(1):14-9.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005-28.
  • Feng X, Xia Q, Yuan L, Yang X, Wang K. Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. Neurotoxicology. 2010;31(4):391-8.
  • Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol. 2022;96(2):403-29.
  • Mlinar B, Enyeart JJ. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol. 1993;469:639-52.
  • Green C, Jost G, Frenzel T, Boyken J, Schwenke C, Pietsch H. The Effect of Gadolinium-Based Contrast Agents on Longitudinal Changes of Magnetic Resonance Imaging Signal Intensities and Relaxation Times in the Aging Rat Brain. Invest Radiol. 2022;57(7):453-62.
  • Xia Q, Feng X, Huang H, Du L, Yang X, Wang K. Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem. 2011;117(1):38-47.
  • Erdogan MA, Apaydin M, Armagan G, Taskiran D. Evaluation of toxicity of gadolinium-based contrast agents on neuronal cells. Acta Radiol. 2021;62(2):206-14.
  • Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol. 2022;45(6):2471-82.
  • Çobanoğlu H. Gadobutrol’un Sitokinezi Bloke Edilmiş Mikronükleus Tekniği ile Genotoksik ve Sitotoksik Potansiyelinin Değerlendirilmesi. Afyon Kocatepe University Journal of Sciences and Engineering. 2021;21(3):532-7.
  • Liao W, McNutt MA, Zhu WG. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009;48(1):46-53.
  • Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol. 2006;314:275-86.
  • Lee RF, Steinert S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res. 2003;544(1):43-64.
  • Magdalou I, Lopez BS, Pasero P, Lambert SA. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Biol. 2014;30:154-64.
  • Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16(1):2-9.
  • Özcan O, Erdal H, Çakırca G, Yönden Z. Oxidative stress and its impacts on intracellular lipids, proteins and DNA. J Clin Exp Investig. 2015;6(3):331-36.
There are 42 citations in total.

Details

Primary Language English
Subjects Dental Therapeutics, Pharmacology and Toxicology, Medical Genetics (Excl. Cancer Genetics)
Journal Section ORIGINAL ARTICLE
Authors

İbrahim Halil Kenger 0000-0002-9848-954X

Batuhan Bilgin 0000-0002-3470-1783

Publication Date September 28, 2025
Submission Date February 21, 2025
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Kenger, İ. H., & Bilgin, B. (2025). In vitro cytogenotoxic evaluation of gadobutrol on mcf-7 cell line and computational molecular docking analysis. Archives of Current Medical Research, 6(3), 226-234. https://doi.org/10.47482/acmr.1643905

Archives of Current Medical Research (ACMR) provides instant open access to all content, bearing in mind the fact that presenting research

free to the public supports a greater global exchange of knowledge.

http://www.acmronline.org/