Research Article
BibTex RIS Cite

Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu

Year 2020, Volume: 4 Issue: 4, 21 - 29, 23.10.2020

Abstract



In this paper, Joint
Evaluated Fission and Fusion (JEFF) Nuclear Data Library has been used to
calculate the nuclear decay heat after a fission burst of 235U and 239Pu  for shutdown time up to 105 sec.
This estimation is based on the numerical solution of the linear differential
equations that describe buildups and decays of the fission products. The code
was written in MATLAB, which is fast and easy-access platform. The verification of the current code is carried out by
comparing the numerical results with the measured reported ones.
The
discrepancies between the evaluated results and the measured ones show the
reliability of the current calculation.

References

  • [1] Magill J., Nuclides.net, Springer Berlin Heidelberg(2003).
  • [2] Tsoulfanidis N., Nuclear Energy, Springer New York. (2013).
  • [3] Bodansky D., Nuclear Energy, Springer New York (2005).
  • [4] Nichols A. Nuclear Data Requirements for Decay Heat Calculations, Lectures given at the Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety, Trieste, 25 Feb. – 28 March, Italy (2002).
  • [5] https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-805.html
  • [6] S. S. NAFEE, S. A. SHAHEEN, and A. M. AL-RAMADY, “Numerical approach for predicting the decay heat contribution of curium isotopes in the mixed oxide nuclear fuel,” Nuclear Engineering and Design 262, 246, Elsevier BV (2013).
  • [7] S. S. NAFEE, A. M. AL-RAMADY, and S. A. SHAHEEN, “Numerical approach to calculate the decay heat of actinides for short cooling time,” Annals of Nuclear Energy 57, 304, Elsevier BV (2013).
  • [8] SHERIF. S. NAFEE, AMEER. K. AL-RAMADY, and SALEM. A. SHAHEEN, “Prediction Of The Total Decay Heat From Fast Neutron Fission Of 235U And 239Pu,” Zenodo(2012).
  • [9] Bateman, Η., “Solution of a system of differential equations occurring in the theory of radioactive transformations,” Cambridge Philosophical Society (1910).
  • [10] BOGACKI and L. F. SHAMPINE, “A 3(2) pair of Runge - Kutta formulas,” Applied Mathematics Letters 2 4, 321, Elsevier BV (1989).
  • [11] J. H. DAVIS, Methods of Applied Mathematics with a MATLAB Overview, Birkhäuser Boston (2004).
  • [12] A. Ü. KESKIN, Ordinary Differential Equations for Engineers, Springer International Publishing (2019).
  • [13] Numerical Techniques for Chemical and Biological Engineers Using MATLAB®, Springer New York (2007).
  • [14] Akiyama, M., Furata, K., Ida, T., Sakata, K., An, S., 1982. Measurements of gamma-ray decay heat of fission products for fast neutron fission of 235U, 239Pu and 233U. J. Atom. Ener. Soc. of Jap, 24, 709-722.
  • [15] Akiyama M. Measurement of fission products decay heat for fast reactor. International Conference on nuclear data for science and technology, Antwerp, Belgium. 1982.
  • [16] Dickens, J. K., McConnell, J. W., 1980. Fission products for thermal neutron fission of plutonium-239. Nucl. Sci. Eng. 73, 42-55.
  • [17] Dickens, J. K., Love, T. A., McConnell, J. W. and Peelle, R. W., 1981. Fission- product energy release for times following thermal-neutron fission of 239Pu and 241Pu between 2 and 14000 s. Nucl. Sci. Eng., 78, 126-146.
Year 2020, Volume: 4 Issue: 4, 21 - 29, 23.10.2020

Abstract

References

  • [1] Magill J., Nuclides.net, Springer Berlin Heidelberg(2003).
  • [2] Tsoulfanidis N., Nuclear Energy, Springer New York. (2013).
  • [3] Bodansky D., Nuclear Energy, Springer New York (2005).
  • [4] Nichols A. Nuclear Data Requirements for Decay Heat Calculations, Lectures given at the Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety, Trieste, 25 Feb. – 28 March, Italy (2002).
  • [5] https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-805.html
  • [6] S. S. NAFEE, S. A. SHAHEEN, and A. M. AL-RAMADY, “Numerical approach for predicting the decay heat contribution of curium isotopes in the mixed oxide nuclear fuel,” Nuclear Engineering and Design 262, 246, Elsevier BV (2013).
  • [7] S. S. NAFEE, A. M. AL-RAMADY, and S. A. SHAHEEN, “Numerical approach to calculate the decay heat of actinides for short cooling time,” Annals of Nuclear Energy 57, 304, Elsevier BV (2013).
  • [8] SHERIF. S. NAFEE, AMEER. K. AL-RAMADY, and SALEM. A. SHAHEEN, “Prediction Of The Total Decay Heat From Fast Neutron Fission Of 235U And 239Pu,” Zenodo(2012).
  • [9] Bateman, Η., “Solution of a system of differential equations occurring in the theory of radioactive transformations,” Cambridge Philosophical Society (1910).
  • [10] BOGACKI and L. F. SHAMPINE, “A 3(2) pair of Runge - Kutta formulas,” Applied Mathematics Letters 2 4, 321, Elsevier BV (1989).
  • [11] J. H. DAVIS, Methods of Applied Mathematics with a MATLAB Overview, Birkhäuser Boston (2004).
  • [12] A. Ü. KESKIN, Ordinary Differential Equations for Engineers, Springer International Publishing (2019).
  • [13] Numerical Techniques for Chemical and Biological Engineers Using MATLAB®, Springer New York (2007).
  • [14] Akiyama, M., Furata, K., Ida, T., Sakata, K., An, S., 1982. Measurements of gamma-ray decay heat of fission products for fast neutron fission of 235U, 239Pu and 233U. J. Atom. Ener. Soc. of Jap, 24, 709-722.
  • [15] Akiyama M. Measurement of fission products decay heat for fast reactor. International Conference on nuclear data for science and technology, Antwerp, Belgium. 1982.
  • [16] Dickens, J. K., McConnell, J. W., 1980. Fission products for thermal neutron fission of plutonium-239. Nucl. Sci. Eng. 73, 42-55.
  • [17] Dickens, J. K., Love, T. A., McConnell, J. W. and Peelle, R. W., 1981. Fission- product energy release for times following thermal-neutron fission of 239Pu and 241Pu between 2 and 14000 s. Nucl. Sci. Eng., 78, 126-146.
There are 17 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Amir Alramady

Sherif Nafee

Ahood Alshammary This is me

Publication Date October 23, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Alramady, A., Nafee, S., & Alshammary, A. (2020). Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu. Acta Materialia Turcica, 4(4), 21-29.
AMA Alramady A, Nafee S, Alshammary A. Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu. ACTAMAT. October 2020;4(4):21-29.
Chicago Alramady, Amir, Sherif Nafee, and Ahood Alshammary. “Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu”. Acta Materialia Turcica 4, no. 4 (October 2020): 21-29.
EndNote Alramady A, Nafee S, Alshammary A (October 1, 2020) Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu. Acta Materialia Turcica 4 4 21–29.
IEEE A. Alramady, S. Nafee, and A. Alshammary, “Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu”, ACTAMAT, vol. 4, no. 4, pp. 21–29, 2020.
ISNAD Alramady, Amir et al. “Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu”. Acta Materialia Turcica 4/4 (October 2020), 21-29.
JAMA Alramady A, Nafee S, Alshammary A. Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu. ACTAMAT. 2020;4:21–29.
MLA Alramady, Amir et al. “Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu”. Acta Materialia Turcica, vol. 4, no. 4, 2020, pp. 21-29.
Vancouver Alramady A, Nafee S, Alshammary A. Numerical Estimation of Nuclear Decay Heat from Induced Neutron Fission of 235U and 239Pu. ACTAMAT. 2020;4(4):21-9.