Conference Paper
BibTex RIS Cite

OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA

Year 2021, Volume: 5 Issue: 1, 18 - 23, 03.09.2021

Abstract

Electron energy distribution function (EEDF) in non-equilibrium plasmas often differs from Maxwellian distribution. Therefore, it is essential to determine the EEDF experimentally for accurately deducing the plasma parameters and rates of plasma-chemical processes. Langmuir Probe is a robust diagnostic tool allowing the estimation of EEDF by the differentiation of I-V curve. However, possible distortions in differentiation process should be handled cautiously. This paper focuses on Maxwellian optimization method for the determination of EEDF from Langmuir probe I-V curve where EEDF is modeled as perturbations around Maxwellian distribution. The proposed optimization method is implemented on the Argon glow discharge plasma experimental data. The results obtained by the proposed Maxwellian optimization are compared with the ones obtained by commonly used Savitzky-Golay filtering method and the polynomial optimization method. The comparison indicates that it is vital to choose the appropriate model function to begin with for the optimization procedure to be satisfactory.

Supporting Institution

TUBİTAK UME

Project Number

G2ED-E1-02-I

Thanks

This research is funded by TÜBİTAK UME.

References

  • Reference1 Langmuir, The collected works of Irving Langmuir, edited by C. Suits, Pergamon Press, Inc., New York, Vol. 4, 23-132 (1961).
  • Reference2 M. J. Druyvesteyn, The voltage arc, Z. Phys. 64,781(1930).
  • Reference3 V. A. Godyak, V. I. Demidov, Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results?, J. Phys. D: Appl. Phys. 44, 2695011 (2011).
  • Reference4 M A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, second ed., Wiley, New York (2005).
  • reference5 V. A. Godyak, R. B. Piejak, B. M. Alexandrovich, Measurement of electron energy distribution in low-pressure RF discharges, Plasma Sources Sci. Technol. 1, 36-58 (1992).
  • Reference6 T. Kimura, A. Yoneya, K. Ohe, Detection of Electron Energy Distribution Function by Finite Impulse Response Filter, Jpn. J. Appl. Phys. Part 1 30, 1877-1881 (1991).
  • Reference7 J. I. Fernández Palop, J. Ballesteros, V. Colomer, M. A. Hernández, A new smoothing method for obtaining the electron energy distribution function in plasmas by the numerical differentiation of the I-V probe characteristic, Rev. Sci. Instrum. 66, 4625-4636 (1995). DOI: https://doi.org/10.1063/1.1145300
  • Reference8 F. Magnus, J. T. Gudmundsson, Digital smoothing of the Langmuir probe I-V characteristic Rev. Sci. Instrum. 79, 073503 (2008). DOI: https://doi.org/10.1063/1.2956970
  • Reference9 W. Seifert, D. Johanning, H.‐R. Lehmann, N. Bankov, Methods for the Numerical Calculation of the Plasma Potential from Measured Langmuir Probe Characteristics, Beiträge aus der Plasmaphysik 26 Isssue 4, 237-253 (1986).
  • Reference10 S. Bose, M. Kaur, P. K. Chattopadhyay, I. J. Ghosh, Y. C. Saxena, R. Pal, Langmuir probe in collisionless and collisional plasma including dusty plasma, J. Plasma Phys. 83, 615830201 (2017). DOI: https://doi.org/10.1017/S0022377817000289
Year 2021, Volume: 5 Issue: 1, 18 - 23, 03.09.2021

Abstract

Project Number

G2ED-E1-02-I

References

  • Reference1 Langmuir, The collected works of Irving Langmuir, edited by C. Suits, Pergamon Press, Inc., New York, Vol. 4, 23-132 (1961).
  • Reference2 M. J. Druyvesteyn, The voltage arc, Z. Phys. 64,781(1930).
  • Reference3 V. A. Godyak, V. I. Demidov, Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results?, J. Phys. D: Appl. Phys. 44, 2695011 (2011).
  • Reference4 M A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, second ed., Wiley, New York (2005).
  • reference5 V. A. Godyak, R. B. Piejak, B. M. Alexandrovich, Measurement of electron energy distribution in low-pressure RF discharges, Plasma Sources Sci. Technol. 1, 36-58 (1992).
  • Reference6 T. Kimura, A. Yoneya, K. Ohe, Detection of Electron Energy Distribution Function by Finite Impulse Response Filter, Jpn. J. Appl. Phys. Part 1 30, 1877-1881 (1991).
  • Reference7 J. I. Fernández Palop, J. Ballesteros, V. Colomer, M. A. Hernández, A new smoothing method for obtaining the electron energy distribution function in plasmas by the numerical differentiation of the I-V probe characteristic, Rev. Sci. Instrum. 66, 4625-4636 (1995). DOI: https://doi.org/10.1063/1.1145300
  • Reference8 F. Magnus, J. T. Gudmundsson, Digital smoothing of the Langmuir probe I-V characteristic Rev. Sci. Instrum. 79, 073503 (2008). DOI: https://doi.org/10.1063/1.2956970
  • Reference9 W. Seifert, D. Johanning, H.‐R. Lehmann, N. Bankov, Methods for the Numerical Calculation of the Plasma Potential from Measured Langmuir Probe Characteristics, Beiträge aus der Plasmaphysik 26 Isssue 4, 237-253 (1986).
  • Reference10 S. Bose, M. Kaur, P. K. Chattopadhyay, I. J. Ghosh, Y. C. Saxena, R. Pal, Langmuir probe in collisionless and collisional plasma including dusty plasma, J. Plasma Phys. 83, 615830201 (2017). DOI: https://doi.org/10.1017/S0022377817000289
There are 10 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Hacı Ahmedov

Project Number G2ED-E1-02-I
Publication Date September 3, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Ahmedov, H. (2021). OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA. Acta Materialia Turcica, 5(1), 18-23.
AMA Ahmedov H. OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA. ACTAMAT. September 2021;5(1):18-23.
Chicago Ahmedov, Hacı. “OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA”. Acta Materialia Turcica 5, no. 1 (September 2021): 18-23.
EndNote Ahmedov H (September 1, 2021) OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA. Acta Materialia Turcica 5 1 18–23.
IEEE H. Ahmedov, “OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA”, ACTAMAT, vol. 5, no. 1, pp. 18–23, 2021.
ISNAD Ahmedov, Hacı. “OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA”. Acta Materialia Turcica 5/1 (September 2021), 18-23.
JAMA Ahmedov H. OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA. ACTAMAT. 2021;5:18–23.
MLA Ahmedov, Hacı. “OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA”. Acta Materialia Turcica, vol. 5, no. 1, 2021, pp. 18-23.
Vancouver Ahmedov H. OPTIMIZATION METHOD FOR ELECTRON ENERGY DISTRIBUTION FUNCTION IN NON-EQUILIBRIUM PLASMA. ACTAMAT. 2021;5(1):18-23.