Research Article
BibTex RIS Cite

Nemrut Krater Gölünden (Bitlis/Türkiye) İzole Edilen Chlorella sp. Mikroalginde H2O2 Uygulaması ile Triaçilgliserol Üretiminin Artırılması

Year 2019, Volume: 15 Issue: 3, 280 - 288, 15.09.2019
https://doi.org/10.22392/actaquatr.508780

Abstract



Bu
çalışmada Nemrut volkanik gölünden izole edilen bir Chlorella sp. mikroalginde oksitatif stresin düzeyine bağlı olarak triaçilgliserol
miktarında ve formasyonundaki değişiklikler incelenmiştir. Bu amaçla
mikroalglerde oksidatif stresi uyarmak için büyüme ortamlarına 1µM, 5µM, ve 20µM
yoğunluklarda Hidrojen peroksit (H2O2) uygulanmıştır. Hidrojen
peroksituygulaması ilk günden itibaren büyümede önemli düzeyde
baskılanmaya sebep olmuştur. Uygulamanın ilk 5 gününde büyümedeki baskılanma
artmış, takip eden günlerde 1µM ve 5µM H2O2 uygulanan
gruplarda büyüme yeniden gelişmiş ve baskılanma kalkmıştır. Mikroalglerin H2O2
içerikleri, ugulanan H2O2 yoğunluğu ile orantılı
şekilde artmıştır. Mikroalglerin klorofil ve karotenoid içerikleri H2O2
uygulanan gruplarda konsantrasyon ile doğru orantılı olarak ilk 24 saatte
artmış, daha sonra da lineer olarak azalmıştır. Mikroalglerin triaçilgliserol
içerikleri özellikle 5uM H2O2 uygulamasına cevapta ilk 24
saatte yaklaşık olarak 2.1 kat artış ile en yüksek düzeyde gerçekleşmiştir. Floresans
görüntüleme ile elde edilen sitoplazmik lipid cisimi üretimindeki artış da bu
veriyi desteklemiştir. Böylece, bu çalışma ile elde edilen sonuçlar kısa süreli
ve düşük yoğunlukta H2O2 uygulamasının mikroalglerden
biyodizel hammaddesi olan triaçilgliserol üretiminde kullanılabilecek bir
yaklaşım olduğunu göstermektedir.




References

  • Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification and use as bioindicators: John Wiley & Sons.
  • Bischoff, H., & Harold, C. B. (1963). Some soil algae from enchanted rock and related algal species (Vol. 1): University of Texas.
  • Chen, M., Tang, H., Ma, H., Holland, T., Ng, K., & Salley, S. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649-1655.
  • Choo, K.-s., Snoeijs, P., & Pedersén, M. (2004). Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. Journal of Experimental Marine Biology and Ecology, 298(1), 111-123.
  • Cooper, W. J., Zika, R. G., Petasne, R. G., & Plane, J. M. (1988). Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Journal of Environmental Science and Technology, 22(10), 1156-1160.
  • Drábková, M., Admiraal, W., & Maršálek, B. (2007). Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms. Journal of Environmental Science and Technology, 41(1), 309-314.
  • Elibol Cakmak, Z., Olmez, T. T., Cakmak, T., Menemen, Y., & Tekinay, T. (2014). Induction of triacylglycerol production in Chlamydomonas reinhardtii: Comparative analysis of different element regimes. Bioresource Technology, 155, 379-387.
  • Elibol Cakmak, Z., Olmez, T. T., Cakmak, T., Menemen, Y., & Tekinay, T. (2015). Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes. Phycological Research, 63(3), 202-211.
  • Elibol Çakmak, Z. (2018). Meke krater gölü’nden (Konya/Türkiye) izole edilen Dunaliella tertiolecta mikroalginin nötral lipid içeriğine pH değişimlerinin etkisi. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(3), 220-231.
  • Elibol Çakmak, Z. (2019). Ammonium nutrition induces triacylglycerol, β-carotene, and lutein production in Dunaliella tertiolecta Butcher. Turkish Jounal of Fisheries and Aquatic Sciences, 19(4), 331-342.
  • Elmoraghy, M., Webster, T., & Farag, I. (2012). Microalgae lipid triggering by cooling stressing. Journal of Energy and Power Engineering, 6(12), 1918.
  • Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639-642.
  • George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374.
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of industrial microbiology and biotechnology, 36(2), 269-274. Guiry, M. D. (2012). How many species of algae are there? Journal of phycology, 48(5), 1057-1063.
  • He, Q., Yang, H., Wu, L., & Hu, C. (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219-228.
  • Hoham, R., Bonome, T., Martin, C., & Leebens-Mack, J. (2002). A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of phycology, 38(5), 1051-1064.
  • Jeffrey, S., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry Physiology Pflanzen, 167(19), 1-194.
  • Mairet, F., Bernard, O., Masci, P., Lacour, T., & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresource Technology, 102(1), 142-149.
  • Mallick, N., & Mohn, F. H. (2000). Reactive oxygen species: response of algal cells. Journal of Plant Physiology, 157(2), 183-193.
  • Mohan, S. V., & Devi, M. P. (2014). Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource Technology, 165, 288-294.
  • O’Grady, J., & Morgan, J. A. (2011). Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess and Biosystems Engineering, 34(1), 121-125.
  • Osundeko, O., Davies, H., & Pittman, J. K. (2013). Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass & Bioenergy, 56, 284-294.
  • Petkov, G., & Garcia, G. (2007). Which are fatty acids of the green alga Chlorella? Journal of Biochemical Systematics and Ecology, 35(5), 281-285.
  • Sharma, K., Schuhmann, H., & Schenk, P. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.
  • Shin, R., Berg, R. H., & Schachtman, D. P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Journal of Plant and Cell Physiology, 46(8), 1350-1357.
  • Sibi, G., Shetty, V., & Mokashi, K. (2016). Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels–A review. Journal of the Energy Institute, 89(3), 330-334.
  • Solovchenko, A. J. R. j. o. p. p. (2012). Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. 59(2), 167-176.
  • Xin, Y., Shen, C., She, Y., Chen, H., Wang, C., Wei, L., . . . Xu, J. (2018). Biosynthesis of triacylglycerol molecules with tailored PUFA profile in industrial microalgae. Molecular Plant.
  • Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., & Cetiner, S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. Plos One, 9(3). doi:10.1371/journal.pone.0091957
  • Zemke, P., Wood, B., & Dye, D. (2010). Considerations for the maximum production rates of triacylglycerol from microalgae. Biomass & Bioenergy, 34(1), 145-151.

Enhancement of Triacylglycerol Production via H2O2 Application in Chlorella sp. Isolated from Nemrut Crater Lake (Bitlis/Turkey)

Year 2019, Volume: 15 Issue: 3, 280 - 288, 15.09.2019
https://doi.org/10.22392/actaquatr.508780

Abstract

In this study, oxidative stress depended
changes in lipid production and formation in Chlorella sp. was analyzed. The strain was isolated from Lake
Nemrut which is a volcanic lake located in Bitlis province. In order to induce
oxidative stress in microalgae 1µM, 5µM, and 20µM hydrogen peroxide (H2O2)
were added into the growth media. Hydrogen peroxide application caused a
significant decrease in growth starting from the first day of incubation.
Following decrease of the growth for first five-days, microalgae started to
grow up as a response to 1µM and 5µM H2O2 application.
The H2O2 contents of microalgae increased in proportion
to the applied H2O2 concentation. Total chlorophyll and
carotenoid contents showed a gradual increase during first 24 hours of H2O2
application, and then a linear decrease was followed afterwards. A maximum of
2.1 fold increase in triacylclygerole content of microalgae was recorded after
24 hours of 5uM H2O2 aplication.  Fluorescence imaging of cytoplasmic lipid
bodies support this datum. Thus, results of this study showed that short-term
and low-density H2O2 application might be used as a
potential approach to induce microalgal triacylglycerol production as a
biodiesel feedstock.

References

  • Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification and use as bioindicators: John Wiley & Sons.
  • Bischoff, H., & Harold, C. B. (1963). Some soil algae from enchanted rock and related algal species (Vol. 1): University of Texas.
  • Chen, M., Tang, H., Ma, H., Holland, T., Ng, K., & Salley, S. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649-1655.
  • Choo, K.-s., Snoeijs, P., & Pedersén, M. (2004). Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. Journal of Experimental Marine Biology and Ecology, 298(1), 111-123.
  • Cooper, W. J., Zika, R. G., Petasne, R. G., & Plane, J. M. (1988). Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Journal of Environmental Science and Technology, 22(10), 1156-1160.
  • Drábková, M., Admiraal, W., & Maršálek, B. (2007). Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms. Journal of Environmental Science and Technology, 41(1), 309-314.
  • Elibol Cakmak, Z., Olmez, T. T., Cakmak, T., Menemen, Y., & Tekinay, T. (2014). Induction of triacylglycerol production in Chlamydomonas reinhardtii: Comparative analysis of different element regimes. Bioresource Technology, 155, 379-387.
  • Elibol Cakmak, Z., Olmez, T. T., Cakmak, T., Menemen, Y., & Tekinay, T. (2015). Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes. Phycological Research, 63(3), 202-211.
  • Elibol Çakmak, Z. (2018). Meke krater gölü’nden (Konya/Türkiye) izole edilen Dunaliella tertiolecta mikroalginin nötral lipid içeriğine pH değişimlerinin etkisi. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(3), 220-231.
  • Elibol Çakmak, Z. (2019). Ammonium nutrition induces triacylglycerol, β-carotene, and lutein production in Dunaliella tertiolecta Butcher. Turkish Jounal of Fisheries and Aquatic Sciences, 19(4), 331-342.
  • Elmoraghy, M., Webster, T., & Farag, I. (2012). Microalgae lipid triggering by cooling stressing. Journal of Energy and Power Engineering, 6(12), 1918.
  • Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639-642.
  • George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374.
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of industrial microbiology and biotechnology, 36(2), 269-274. Guiry, M. D. (2012). How many species of algae are there? Journal of phycology, 48(5), 1057-1063.
  • He, Q., Yang, H., Wu, L., & Hu, C. (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219-228.
  • Hoham, R., Bonome, T., Martin, C., & Leebens-Mack, J. (2002). A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of phycology, 38(5), 1051-1064.
  • Jeffrey, S., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry Physiology Pflanzen, 167(19), 1-194.
  • Mairet, F., Bernard, O., Masci, P., Lacour, T., & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresource Technology, 102(1), 142-149.
  • Mallick, N., & Mohn, F. H. (2000). Reactive oxygen species: response of algal cells. Journal of Plant Physiology, 157(2), 183-193.
  • Mohan, S. V., & Devi, M. P. (2014). Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource Technology, 165, 288-294.
  • O’Grady, J., & Morgan, J. A. (2011). Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess and Biosystems Engineering, 34(1), 121-125.
  • Osundeko, O., Davies, H., & Pittman, J. K. (2013). Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass & Bioenergy, 56, 284-294.
  • Petkov, G., & Garcia, G. (2007). Which are fatty acids of the green alga Chlorella? Journal of Biochemical Systematics and Ecology, 35(5), 281-285.
  • Sharma, K., Schuhmann, H., & Schenk, P. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.
  • Shin, R., Berg, R. H., & Schachtman, D. P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Journal of Plant and Cell Physiology, 46(8), 1350-1357.
  • Sibi, G., Shetty, V., & Mokashi, K. (2016). Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels–A review. Journal of the Energy Institute, 89(3), 330-334.
  • Solovchenko, A. J. R. j. o. p. p. (2012). Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. 59(2), 167-176.
  • Xin, Y., Shen, C., She, Y., Chen, H., Wang, C., Wei, L., . . . Xu, J. (2018). Biosynthesis of triacylglycerol molecules with tailored PUFA profile in industrial microalgae. Molecular Plant.
  • Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., & Cetiner, S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. Plos One, 9(3). doi:10.1371/journal.pone.0091957
  • Zemke, P., Wood, B., & Dye, D. (2010). Considerations for the maximum production rates of triacylglycerol from microalgae. Biomass & Bioenergy, 34(1), 145-151.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Environmental Sciences
Journal Section Research Articles
Authors

Emine Selçuk This is me

Turgay Çakmak 0000-0002-4953-8384

Publication Date September 15, 2019
Published in Issue Year 2019 Volume: 15 Issue: 3

Cite

APA Selçuk, E., & Çakmak, T. (2019). Nemrut Krater Gölünden (Bitlis/Türkiye) İzole Edilen Chlorella sp. Mikroalginde H2O2 Uygulaması ile Triaçilgliserol Üretiminin Artırılması. Acta Aquatica Turcica, 15(3), 280-288. https://doi.org/10.22392/actaquatr.508780