Research Article
BibTex RIS Cite

İmidakloprid Uygulamasının Zebra Balığı (Danio rerio) İnce Bağırsak Dokusunda Oluşturduğu Histopatolojik Etkiler

Year 2020, Volume: 16 Issue: 3, 360 - 365, 01.09.2019
https://doi.org/10.22392/actaquatr.688863

Abstract

Tarımda verimliliği artırmak için pestisit kullanımı gün geçtikçe artmaktadır. Tarımsal alanda kullanılan pestisitler, yağmurlar, yeraltı suları vb. yollarla sucul ekosisteme karışmakta ve sucul canlıların yaşamını tehdit etmektedir. Günümüzde en çok kullanılan pestisit gruplarından biri de neonikotinoidlerdir. Imidakloprid, bu grubun içinde en çok bilinenidir. Bu çalışmada imidaklopridin zebra balığı bağısak dokusunda yarattığı histopatolojik etkilerin gözlenmesi amaçlanmıştır. Balıklara 5 gün boyunca 9,5, 19 ve 38 mg/L’lik konsantrasyonlarda imidakloprid uygulanmıştır. Dokular ışık mikroskobunda incelendiğinde, villus morfolojisinde bozulma, epitel hücrelerinde fırçamsı kenar yapısında dejenerasyon, inflamasyona bağlı olarak Goblet hücrelerinde ve enterositlerde hiperplazi, villuslarda birleşme, lamina propriada genişleme ve dağılma, muscularis externa tabakasında kalınlaşma ve bu tabakadaki düz kas hücrelerinde hipertrofi gibi etkiler gözlenmiştir. En yüksek konsantrasyon grubuna ait örneklerde ince bağırsak dokularında displazi tespit edilmiştir.

References

  • Akbulut, C., Öztürk, B., Genc, H., Zengin M.,& Yön N.D. (2017) Developmental Toxicity of (4S)-2- (4-hydroxy-3-methoxyphenyl) thiazolidine-4-carboxylic acid in Zebrafish (Danio rerio). Brazilian Archives of Biology and Technology,60, e17160547.
  • Bambino, K., & Chu, J. (2017). Zebrafish in Toxicology and Environmental Health. Current Topics in Developmental Biology, 124, 331–367.
  • Bhattacharjee, D., & Das, S. (2015). Intestinal histopathology as a biomarker for lindane toxicity in teleost fish, Channa punctata. Global Journal of Biology Agriculture and Health Sciences, 4(3),16-18.
  • Brugman, S. (2016). The zebrafish as a model to study intestinal inflammation. Developmental & Comparative Immunology, 64, 82-92.
  • Cengiz, E.İ., & Ünlü, E., Balcı, K. (2001). The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis, Journal of Environmental Science and Health, Part B, 36(1), 75–85.
  • Das, S., & Gupta A. (2013). Histopathological changes in the intestine of indian flying barb (Esomus danricus) exposed to organophosphate pesticide, Malathion (EC50). Global Journal of Biology Agriculture and Health Sciences, 2(2), 90-93.
  • Gupta, R.C., & Milatovic, D. (2014). Insecticides. In R.C. Gupta (Ed.), Biomarkers in Toxicology. (pp. 389-407). Academic Press, Cambridge, USA.
  • Gupta, S., Gajbhiye, V.T., Kalpana, N.P., & Agnihotri, N.P. (2002). Leaching behavior of imidacloprid formulations in soil. Bulletin of Environmental Contamination and Toxicology, 68, 502–508.
  • Jayaraj, R., Megha, P., & Puthur, S. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3),90-100.
  • Koç, N.D., Muşlu, M.N., Kayhan, F.E., & Çolak, S.Ö. (2009). Histopathological changes in ovaries of zebrafish (Danio rerio) following administration of deltamethrin. Fresenius Environmental Bulletin, - 18(10), 1872- 1878.
  • Sheets, L.P. (2010). Imidacloprid: A Neonicotinoid Insecticide. In R. Krieger (Ed.), Hayes' Handbook of Pesticide Toxicology (pp. 2055-2064). Academic Press, Cambridge, USA.
  • Velmurugan, B., Selvanayagam, M., Cengiz, E.İ., & Unlu E. (2007). Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala. Environmental Toxicology and Pharmacology, 24(3), 286-291.
  • Weston, D.P., Chen, D., & Lydy, M.J. (2015). Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. Science of the Total Environment, 527–528, 18–25.
  • Wu, S., Li, X., Liu, X., Yang, G., An, X., Wang, Q., & Wang, Y. (2018). Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environmental Pollution, 235, 470-481.
  • Yön Ertuğ, N.D., Akbulut C., Abar M., & Güneş S. (2014). The Histopathological effects of 2,4- dichlorophenoxyacetic acid on intestine tissue of zebrafish (Danio rerio). Elixir Pollution, 74, 27021-27024.
  • Zhu, Y.C., Yao, J., Adamczyk, J., Luttrell, R. (2017). Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS One, 12(5), e0176837.

Histopathological Evaluation of Zebrafish (Danio rerio) Intestinal Tissue After Imidacloprid Exposure

Year 2020, Volume: 16 Issue: 3, 360 - 365, 01.09.2019
https://doi.org/10.22392/actaquatr.688863

Abstract

The use of pesticides has been increasing day by day in order to increase productivity in agriculture. Pesticides which used in the agricultural area mix into the aquatic ecosystem through rains and groundwater etc. and it threatens the life of aquatic organisms. Nowadays, one of the most used pesticide group is neonicotinoids. Imidacloprid is the most well known in this group. In this study, it was aimed to observe the histopathological effects of imidacloprid in zebrafish intestinal tissue. Adult zebrafish individuals were administered imidacloprid in concentrations of 9.5, 19 and 38 mg/L for 5 days. When tissues are examined under light microscopy, deterioration of villi morphology, degeneration in brush border structure of epithelial cells, hyperplasia in Goblet cells and enterocytes due to inflammation, enlargement and disintegration in lamina propria were detected. In addition, hypertrophy of the smooth muscle cells and thickening in the muscularis externa layer were observed. Dysplasia was detected in the small intestine tissues in samples belonging to the highest concentration group.

References

  • Akbulut, C., Öztürk, B., Genc, H., Zengin M.,& Yön N.D. (2017) Developmental Toxicity of (4S)-2- (4-hydroxy-3-methoxyphenyl) thiazolidine-4-carboxylic acid in Zebrafish (Danio rerio). Brazilian Archives of Biology and Technology,60, e17160547.
  • Bambino, K., & Chu, J. (2017). Zebrafish in Toxicology and Environmental Health. Current Topics in Developmental Biology, 124, 331–367.
  • Bhattacharjee, D., & Das, S. (2015). Intestinal histopathology as a biomarker for lindane toxicity in teleost fish, Channa punctata. Global Journal of Biology Agriculture and Health Sciences, 4(3),16-18.
  • Brugman, S. (2016). The zebrafish as a model to study intestinal inflammation. Developmental & Comparative Immunology, 64, 82-92.
  • Cengiz, E.İ., & Ünlü, E., Balcı, K. (2001). The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis, Journal of Environmental Science and Health, Part B, 36(1), 75–85.
  • Das, S., & Gupta A. (2013). Histopathological changes in the intestine of indian flying barb (Esomus danricus) exposed to organophosphate pesticide, Malathion (EC50). Global Journal of Biology Agriculture and Health Sciences, 2(2), 90-93.
  • Gupta, R.C., & Milatovic, D. (2014). Insecticides. In R.C. Gupta (Ed.), Biomarkers in Toxicology. (pp. 389-407). Academic Press, Cambridge, USA.
  • Gupta, S., Gajbhiye, V.T., Kalpana, N.P., & Agnihotri, N.P. (2002). Leaching behavior of imidacloprid formulations in soil. Bulletin of Environmental Contamination and Toxicology, 68, 502–508.
  • Jayaraj, R., Megha, P., & Puthur, S. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3),90-100.
  • Koç, N.D., Muşlu, M.N., Kayhan, F.E., & Çolak, S.Ö. (2009). Histopathological changes in ovaries of zebrafish (Danio rerio) following administration of deltamethrin. Fresenius Environmental Bulletin, - 18(10), 1872- 1878.
  • Sheets, L.P. (2010). Imidacloprid: A Neonicotinoid Insecticide. In R. Krieger (Ed.), Hayes' Handbook of Pesticide Toxicology (pp. 2055-2064). Academic Press, Cambridge, USA.
  • Velmurugan, B., Selvanayagam, M., Cengiz, E.İ., & Unlu E. (2007). Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala. Environmental Toxicology and Pharmacology, 24(3), 286-291.
  • Weston, D.P., Chen, D., & Lydy, M.J. (2015). Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. Science of the Total Environment, 527–528, 18–25.
  • Wu, S., Li, X., Liu, X., Yang, G., An, X., Wang, Q., & Wang, Y. (2018). Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environmental Pollution, 235, 470-481.
  • Yön Ertuğ, N.D., Akbulut C., Abar M., & Güneş S. (2014). The Histopathological effects of 2,4- dichlorophenoxyacetic acid on intestine tissue of zebrafish (Danio rerio). Elixir Pollution, 74, 27021-27024.
  • Zhu, Y.C., Yao, J., Adamczyk, J., Luttrell, R. (2017). Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS One, 12(5), e0176837.
There are 16 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Cansu Akbulut 0000-0003-4333-7669

Nazan Deniz Yön Ertuğ 0000-0002-6830-8971

Publication Date September 1, 2019
Published in Issue Year 2020 Volume: 16 Issue: 3

Cite

APA Akbulut, C., & Yön Ertuğ, N. D. (2019). Histopathological Evaluation of Zebrafish (Danio rerio) Intestinal Tissue After Imidacloprid Exposure. Acta Aquatica Turcica, 16(3), 360-365. https://doi.org/10.22392/actaquatr.688863