Research Article
BibTex RIS Cite

Monitoring of Enzymatic Activity in the Gastrointestinal Tract of Black Sea Salmon (Salmo labrax Pallas, 1814)

Year 2022, Volume: 18 Issue: 2, 236 - 246, 01.06.2022
https://doi.org/10.22392/actaquatr.1020183

Abstract

In this study, it was aimed to determine the activity of digestive enzymes at different time intervals after-feeding throughout the gastrointestinal tract of Black Sea salmon (Salmo labrax). The study was conducted at freshwater recirculating aquaculture systems (RAS). The fish were fed by hand up to satiation for 60 days with diets containing 46.25% protein and 14.90% lipid. The fish gastrointestinal tract including stomach, anterior (with pyloric caeca), middle and posterior sections were taken together at 45th minute, 3rd, 6th, 12th, 24th, 48th, 72nd, and 96th hours post-feeding. The tissues were were stored at -80°C until analyzed. In terms of digestive enzyme activity, at the end of the study, anterior and middle intestine sections had the highest level at 3rd-hour post-feeding. Similarly, pepsin, trypsin, and lipase in the stomach had the highest activity at 3rd-hour post-feeding. However, amylase in the stomach was the highest level at 45th minute and 3rd-hour post-feeding. At 3rd-hours post-feeding, the pepsin in the stomach, the trypsin, and lipase in the anterior section, and the amylase in the middle intestine had the highest levels. Moreover, the correlations between these enzymes were strong in the positive direction. Also, the difference in pepsin, trypsin, amylase, and lipase levels in the samples dissected at different time intervals after feeding was statistically significant. Our results revealed that stomach, anterior, middle, and posterior sections in the gastrointestinal tract of Black Sea salmon had enzyme activity in the different levels, and enzyme activity of these sections changed depending on time post-feeding.

Supporting Institution

TAGEM

Project Number

TAGEM/HAYSUD/2017/A11/P-01/3.

Thanks

This research was carried out within the project named “Investigation of possibilities of using some phytobiotic added feeds in feeding of Black Sea trout "

References

  • Albrecht, M.P., Ferreıra, M.F.N., Caramaschi, E.P. (2001). Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae). Journal of Fish Biology. 58, 419–430. https://doi.org/10.1006/jfbi.2000.1462
  • Almeida, A.P.G., Zardo, E.L., Toni, C., Behr, E.R., da Silv, L.P., Vieira, J.P., Loro, V.L., & Baldisserotto, B. (2018). Composition of gastrointestinal content, protease and lipase activities in summer and winter of four freshwater siluriforms (Teleostei: Actinopterygii) with two different feeding habits. Zoologia. 35: e13286. https://doi.org/10.3897/zoologia.35.e13286
  • Barlaya, G., Sridhar, N., Kushwaha, J.P., & Gangadhar, B. (2016). Digestive enzyme activities in different size groups and segments of the digestive tract in labeo rohita (day, 1878). Journal of Aquaculture & Marine Biology. Volume 4 Issue 5.
  • Bieth, J. & Metais, P. (1968). The simultaneous presence of trypsin and trypsin inhibitors in some pathological effusions. Clinica Chimica Acta, 22, 639-642.
  • Bocina I, Santic Z, Restovic I, & Topic S. 2017. Histology of the digestive system of the garfish Belone belone (Teleostei: Belonidae). The European Zoological Journal. 84:1, 89-95. https://doi.org/10.1080/11250003.2016.1276977
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Caruso, G., Denaro, M.G., & Genovese, L. (2008). Temporal changes in digestive enzyme activities in the gastrointestinal tract of European eel (Anguilla anguilla) (Linneo 1758) following feeding, Marine and Freshwater Behaviour and Physiology, 41:4, 215-228, https://doi.org/10.1080/10236240802492931
  • Caruso, G., Denaro, M.G., & Genovese, L. (2009). Digestive Enzymes in Some Teleost Species of Interest for Mediterranean Aquaculture. The Open Fish Science Journal, 2, 74-86.
  • Coccia, E., Varricchio, E., & Paolucci, M. (2011). Digestive Enzymes in the Crayfish Cherax albidus: Polymorphism and Partial Characterization. International Journal of Zoology. https://doi.org/10.1155/2011/310371
  • Deguara, S., Jauncey, K., & Agius, C. (2003). Enzyme activities and pH variations in the digestive tract of gilthead sea bream. Journal of Fish Biology. 62, 1033–1043. https://doi.org/10.1046/j.1095-8649.2003.00094.x
  • Deshmukh MR, Chirde SG, & Gadhikar YA. (2015). Histological and histochemical study on the stomach and intestine of catfish heteropneustes fossilis (bloch 1794). G.J.B.A.H.S. Vol.4 (1):16-23.
  • Duarte, S., Bemquerer, M., & Araújo, F.G. (2015). Enzymatic Activity in the Gastrointestinal Tract of Pimelodus maculatus (Teleostei, Siluriformes) in Two Neotropical Reservoirs with Different Trophic Conditions. Braz. Arch. Biol. Technol. v.58 n.4: pp. 605-612.
  • Fountoulaki, E., Alexis, M.N., Nengas, I., & Venou, B., (2005). Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult. Res. 36, 1243–1251.
  • Gioda, C.R., Pretto, A., Freitas, C.S., Leitemperger, J., Loro, V.L., Lazzari, R., Lissner, L.A., Baldisserotto, B. & Salbego, J. (2017). Different feeding habits influence the activity of digestive enzymes in freshwater fish. Ciência Rural, Santa Maria, 47: 03, e20160113. http://dx.doi.org/10.1590/0103-8478cr20160113
  • Gonzalez-Felix, M.L., Santana-Bejarano, E.B., Perez-Velazquez, M., & Villalba-Villalba, A.G. (2018). Partial characterization, quantification and activity of pancreatic lipase in the gastrointestinal tract of Totoaba macdonaldi. Arch Biol Sci.70(3):489-496. https://doi.org/10.2298/ABS180202009G
  • Infante, J. Z. & Cahu, C. L. (1994). Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Physiology, 109, 209-212.
  • Iqbal, K.J., Ashraf, M., Javıd, A., Chaudhry, M.S., Khan, N., Majeed, H., & Abbas, F. (2018). Effect of different feed ingredients on digestive enzymes activity and on the histology of liver and intestine in Labeo rohita Hamilton, 1822. Indian J. Fish., 65(4): 93-101. https://doi.org/10.21077/ijf.2018.65.4.62647-11
  • Khojasteh SMB, Sheikhzadeh F, Mohammadnejad D, & Azami A. (2009). Histological, Histochemical and Ultrastructural Study of the Intestine of Rainbow Trout (Oncorhynchus mykiss). World Applied Sciences Journal. 6 (11), 1525-1531.
  • Klahan, R., Areechon, N., Yoonpundh, R., & Engkagul, A. (2009). Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Kasetsart J. (Nat. Sci.) 43:143 - 153.
  • Munilla-Moran, R., & Saborido-Rey, F. (1996). Digestive Enzymes in Marine Species. I. Proteinase Activities in Gut from Redfish (Sebastes mentella), Seabream (Sparus aurata) and Turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Volume 113, Issue 2, 395-402.
  • Murtaza, M., Abdullah, S., Hassan, W., Abbas, K., Naz, H., & Zia, M.A. (2016). Studies on amylase and lipase activity in fishes fed with diet containing different feed ingredients. Punjab Univ. J. Zool., 31 (2), pp. 165-169.
  • Solovyev, M.M., Kashinskaya, E.N., Izvekova, G.I., & Glupov, V.V. (2015). pH values and activity of digestive enzymes in the gastrointestinal tract of fish in lake Chany (West Siberia). Journal of Ichthyology, 55, No. 2, pp. 251–258.
  • Susilo, U., Sukardi, P., & Affandi, R. (2018). The age dependent activities of digestive enzymes in Rasbora, Rasbora lateristriata Blkr., (Pisces: Cyprinidae). Molekul, Vol. 13. No. 1, 80 – 91. https://doi.org/10.20884/1.jm.2018.13.1.418
  • Tian, H., Meng, Y., Li, C., Zhang, L., Xu, G., Shi, Y., Shi, J., Qi, H., & Ma, R. (2019). A study of the digestive enzyme activities in scaleless carp (Gymnocypris przewalskii) on the Qinghai-Tibetan Plateau. Aquaculture Reports 13, 100174. https://doi.org/10.1016/j.aqrep.2018.10.002
  • Versaw, K. W., Cuppet, L. S., Winters, D. D., & Williams., L. E. (1989). An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54, 1557-1558.
  • Weinrauch, A.M., Schaefer, C.M., & Goss, G.G. (2019). Activity and post-prandial regulation of digestive enzyme activity along the Pacific hagfish (Eptatretus stoutii) alimentary canal. PLoS ONE 14 (4): e0215027. https://doi.org/10.1371/journal.pone.0215027
  • Worthington, T. M. (1982). Pepsin enzymes and related biochemicals. Freehold, NJ: Worthington Diagnostic System Inc. Retrieved from http://www.worthington-biochem.com/index/manual.html

Karadeniz Alabalığının (Salmo labrax Pallas, 1814) Gastrointestinal Sistemindeki Enzimatik Aktivitenin İzlenmesi

Year 2022, Volume: 18 Issue: 2, 236 - 246, 01.06.2022
https://doi.org/10.22392/actaquatr.1020183

Abstract

Bu çalışmada, Karadeniz alabalığının (Salmo labrax) sindirim sistemi boyunca beslenme sonrası farklı zaman aralıklarında sindirim enzimlerinin aktivitesinin belirlenmesi amaçlanmıştır. Çalışma tatlısu ile çalışan kapalı devre araştırma ünitesinde gerçekleştirilmiştir. Balıklar deneme boyunca %46,25 protein ve %14,90 lipit içeren yemlerle 60 gün süresince doyana kadar elle beslenmiştir. Balıkların mide, ön (pilorik kese ile birlikte), orta ve arka bağırsakları içeren sindirim kanalı, yemlemeden sonra 45. dakika, 3., 6., 12., 24., 48., 72. ve 96. saatlerde alınmıştır. Dokular analiz edilene kadar -80°C'de saklanmıştır. Sindirim enzim aktivitesi beslenme sonrası 3. saatte ön ve orta bağırsak bölümlerinde en yüksek seviyeye ulaşmıştır. Benzer şekilde midedeki pepsin, tripsin ve lipaz enzimleri de beslenmeden sonraki 3. saatte en yüksek aktiviteye ulaşmıştır. Bununla birlikte, midede amilaz, beslenme sonrası 45. dakika ve 3. saatte en yüksek düzeyde bulunmuştur. Beslenme sonrası 3. saatte midede pepsin, ön bağırsakta tripsin ve lipaz ve orta kısımda amilaz en yüksek seviyelere ulaşmıştır. Bununla birlikte, bu enzimler arasındaki korelasyonlar pozitif yönde güçlü bulunmuştur. Ayrıca beslenme sonrası farklı zaman aralıklarında alınan örneklerde pepsin, tripsin, amilaz ve lipaz düzeylerindeki fark istatistiksel olarak anlamlı bulunmuştur (P<0.05). Sonuçlar, Karadeniz alabalığının sindirim kanalındaki mide, ön, orta ve arka bölümlerinin farklı seviyelerde enzim aktivitesine sahip olduğunu ve bu bölümlerin enzim aktivitesinin besleme sonrası zamana bağlı olarak değiştiğini göstermiştir.

Project Number

TAGEM/HAYSUD/2017/A11/P-01/3.

References

  • Albrecht, M.P., Ferreıra, M.F.N., Caramaschi, E.P. (2001). Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae). Journal of Fish Biology. 58, 419–430. https://doi.org/10.1006/jfbi.2000.1462
  • Almeida, A.P.G., Zardo, E.L., Toni, C., Behr, E.R., da Silv, L.P., Vieira, J.P., Loro, V.L., & Baldisserotto, B. (2018). Composition of gastrointestinal content, protease and lipase activities in summer and winter of four freshwater siluriforms (Teleostei: Actinopterygii) with two different feeding habits. Zoologia. 35: e13286. https://doi.org/10.3897/zoologia.35.e13286
  • Barlaya, G., Sridhar, N., Kushwaha, J.P., & Gangadhar, B. (2016). Digestive enzyme activities in different size groups and segments of the digestive tract in labeo rohita (day, 1878). Journal of Aquaculture & Marine Biology. Volume 4 Issue 5.
  • Bieth, J. & Metais, P. (1968). The simultaneous presence of trypsin and trypsin inhibitors in some pathological effusions. Clinica Chimica Acta, 22, 639-642.
  • Bocina I, Santic Z, Restovic I, & Topic S. 2017. Histology of the digestive system of the garfish Belone belone (Teleostei: Belonidae). The European Zoological Journal. 84:1, 89-95. https://doi.org/10.1080/11250003.2016.1276977
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Caruso, G., Denaro, M.G., & Genovese, L. (2008). Temporal changes in digestive enzyme activities in the gastrointestinal tract of European eel (Anguilla anguilla) (Linneo 1758) following feeding, Marine and Freshwater Behaviour and Physiology, 41:4, 215-228, https://doi.org/10.1080/10236240802492931
  • Caruso, G., Denaro, M.G., & Genovese, L. (2009). Digestive Enzymes in Some Teleost Species of Interest for Mediterranean Aquaculture. The Open Fish Science Journal, 2, 74-86.
  • Coccia, E., Varricchio, E., & Paolucci, M. (2011). Digestive Enzymes in the Crayfish Cherax albidus: Polymorphism and Partial Characterization. International Journal of Zoology. https://doi.org/10.1155/2011/310371
  • Deguara, S., Jauncey, K., & Agius, C. (2003). Enzyme activities and pH variations in the digestive tract of gilthead sea bream. Journal of Fish Biology. 62, 1033–1043. https://doi.org/10.1046/j.1095-8649.2003.00094.x
  • Deshmukh MR, Chirde SG, & Gadhikar YA. (2015). Histological and histochemical study on the stomach and intestine of catfish heteropneustes fossilis (bloch 1794). G.J.B.A.H.S. Vol.4 (1):16-23.
  • Duarte, S., Bemquerer, M., & Araújo, F.G. (2015). Enzymatic Activity in the Gastrointestinal Tract of Pimelodus maculatus (Teleostei, Siluriformes) in Two Neotropical Reservoirs with Different Trophic Conditions. Braz. Arch. Biol. Technol. v.58 n.4: pp. 605-612.
  • Fountoulaki, E., Alexis, M.N., Nengas, I., & Venou, B., (2005). Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult. Res. 36, 1243–1251.
  • Gioda, C.R., Pretto, A., Freitas, C.S., Leitemperger, J., Loro, V.L., Lazzari, R., Lissner, L.A., Baldisserotto, B. & Salbego, J. (2017). Different feeding habits influence the activity of digestive enzymes in freshwater fish. Ciência Rural, Santa Maria, 47: 03, e20160113. http://dx.doi.org/10.1590/0103-8478cr20160113
  • Gonzalez-Felix, M.L., Santana-Bejarano, E.B., Perez-Velazquez, M., & Villalba-Villalba, A.G. (2018). Partial characterization, quantification and activity of pancreatic lipase in the gastrointestinal tract of Totoaba macdonaldi. Arch Biol Sci.70(3):489-496. https://doi.org/10.2298/ABS180202009G
  • Infante, J. Z. & Cahu, C. L. (1994). Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Physiology, 109, 209-212.
  • Iqbal, K.J., Ashraf, M., Javıd, A., Chaudhry, M.S., Khan, N., Majeed, H., & Abbas, F. (2018). Effect of different feed ingredients on digestive enzymes activity and on the histology of liver and intestine in Labeo rohita Hamilton, 1822. Indian J. Fish., 65(4): 93-101. https://doi.org/10.21077/ijf.2018.65.4.62647-11
  • Khojasteh SMB, Sheikhzadeh F, Mohammadnejad D, & Azami A. (2009). Histological, Histochemical and Ultrastructural Study of the Intestine of Rainbow Trout (Oncorhynchus mykiss). World Applied Sciences Journal. 6 (11), 1525-1531.
  • Klahan, R., Areechon, N., Yoonpundh, R., & Engkagul, A. (2009). Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Kasetsart J. (Nat. Sci.) 43:143 - 153.
  • Munilla-Moran, R., & Saborido-Rey, F. (1996). Digestive Enzymes in Marine Species. I. Proteinase Activities in Gut from Redfish (Sebastes mentella), Seabream (Sparus aurata) and Turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Volume 113, Issue 2, 395-402.
  • Murtaza, M., Abdullah, S., Hassan, W., Abbas, K., Naz, H., & Zia, M.A. (2016). Studies on amylase and lipase activity in fishes fed with diet containing different feed ingredients. Punjab Univ. J. Zool., 31 (2), pp. 165-169.
  • Solovyev, M.M., Kashinskaya, E.N., Izvekova, G.I., & Glupov, V.V. (2015). pH values and activity of digestive enzymes in the gastrointestinal tract of fish in lake Chany (West Siberia). Journal of Ichthyology, 55, No. 2, pp. 251–258.
  • Susilo, U., Sukardi, P., & Affandi, R. (2018). The age dependent activities of digestive enzymes in Rasbora, Rasbora lateristriata Blkr., (Pisces: Cyprinidae). Molekul, Vol. 13. No. 1, 80 – 91. https://doi.org/10.20884/1.jm.2018.13.1.418
  • Tian, H., Meng, Y., Li, C., Zhang, L., Xu, G., Shi, Y., Shi, J., Qi, H., & Ma, R. (2019). A study of the digestive enzyme activities in scaleless carp (Gymnocypris przewalskii) on the Qinghai-Tibetan Plateau. Aquaculture Reports 13, 100174. https://doi.org/10.1016/j.aqrep.2018.10.002
  • Versaw, K. W., Cuppet, L. S., Winters, D. D., & Williams., L. E. (1989). An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54, 1557-1558.
  • Weinrauch, A.M., Schaefer, C.M., & Goss, G.G. (2019). Activity and post-prandial regulation of digestive enzyme activity along the Pacific hagfish (Eptatretus stoutii) alimentary canal. PLoS ONE 14 (4): e0215027. https://doi.org/10.1371/journal.pone.0215027
  • Worthington, T. M. (1982). Pepsin enzymes and related biochemicals. Freehold, NJ: Worthington Diagnostic System Inc. Retrieved from http://www.worthington-biochem.com/index/manual.html
There are 27 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Osman Tolga Özel 0000-0002-5414-6975

Selin Ertürk Gürkan 0000-0003-3319-0616

Project Number TAGEM/HAYSUD/2017/A11/P-01/3.
Early Pub Date May 31, 2022
Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 18 Issue: 2

Cite

APA Özel, O. T., & Ertürk Gürkan, S. (2022). Monitoring of Enzymatic Activity in the Gastrointestinal Tract of Black Sea Salmon (Salmo labrax Pallas, 1814). Acta Aquatica Turcica, 18(2), 236-246. https://doi.org/10.22392/actaquatr.1020183