Bu çalışma, Carcinus aestuarii'de hemosit sayısı ile hemosit tipleri arasındaki ilişkiyi çevresel değişkenler ve morfometrik ölçümlerle belirlemeyi amaçlamaktadır. Çardak Lagünü'nde Haziran 2018, Ekim 2018, Şubat 2019 ve Mayıs 2019'da mevsimsel olarak toplam 240 yengeç toplanmıştır. Ortalama kabuk uzunluğu (CL) 44.66±0.44 mm, ortalama kabuk genişliği (CW) 37.71±0.38 mm ve ortalama ağırlık 28.49±0.88 g’ idi. Yengeç örnekleri buz üzerinde 10 dakika süreyle anesteziye tabi tutuldu ve 1 mL'lik plastik bir şırınga kullanılarak her bir yengecin bacaklarından 500 uL hemolenf toplandı. Örneklemeden sonra hemolenf örnekleri bir Thoma lamına uygulanan antikoagülan ile karıştırıldı ve X40 büyütmede mikroskop altında incelendi. Toplam hemosit sayısı (THC) 13.91±8.08x106 (hücre/mm3) olarak hesaplandı. Diferansiyel hemosit sayısı (DHC) hiyalinosit için % 53.25±0.6, yarı granülosit için % 26.15±0.23 ve granülosit için % 20.6±0.06 ve 3 farklı hücre tipi gözlendi. En baskın hücre tipi hyalinosit hücreleridir.
Adeogun, A. O., Salami, O. A., Chukwuka, A. V., & Alaka, O. O. (2015). Hematological and serum biochemical profile of the blue crab, Callinectes amnicola from two tropical lagoon ecosystems. African Journal of Biomedical Research, 18(3), 233– 247.
Aliko, V., Hajdaraj, G., Caci, A., & Faggio, C. (2015). Copper induced lysosomal membrane destabilization in haemolymph cells of Mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Brazilian Archives of Biology and Technology, 58(5), 750-756. https://doi.org/10.1590/S1516-89132015050244
Bachau, A. G. (1981). Crustaeceans. Invertebrate blood cells, 2, 385-420.
Bauchau A. G, & Plaquet J. C. (1973). Variation du nombre des hémocytes chez les Crustacés Brachyoures. Crustaceana, 24(2), 215-23. https://doi.org/10.1163/156854073X00380
Başusta A, & Şen D. (2004). Keban Baraj Gölü’nde yaşayan Acanthobrama marmid (Heckel,1843) de kan parametrelerinin incelenmesi. Turkish Journal of Veterinary and Animal Sciences, 28(1), 1-6.
Battison, A., Cawthorn, R., & Horney, B. (2003). Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). Journal of Invertebrate Pathology, 84(3), 177-197. https://doi.org/10.1016/j.jip.2003.11.005
Blaxhall, P. C., & Daisley, K. W. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, 5(6), 771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x
Burgos-Aceves, M. A., & Faggio, C. (2017). An approach to the study of the immunity functions of bivalve hemocytes: physiology and molecular aspects. Fish and Shellfish Immunology, 67, 513–517. https://doi.org/10.1016/j.fsi.2017.06.042
Clare, A. S., & Lumb, G. (1994). Identification of hemocytes and their role in clotting in the blue crab Callinectes sapidus. Marine Biology, 118(4), 601-610. https://doi.org/10.1007/BF00347507
Coles, J. A., Farley, S. R. & Pipe, R. K. (1994). Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquatic Toxicology, 30(4), 367–379. https://doi.org/10.1016/0166-445X(94)00051-4
Dutta, S., Biswas, B., & Guha, B. (2021). Sex specific quantitative estimation of total haemocytes in mud crab, Scylla serrata (Forskâl, 1775): An evidenced based report. Journal of Entomology and Zoology Studies, 9(4), 439-441. https://doi.org/10.22271/j.ento.2021.v9.i4f.8814
Gürkan, M. (2018). Effects of three different nanoparticles on bioaccumulation, oxidative stress, osmoregulatory, and immune responses of Carcinus aestuarii. Toxicological & Environmental Chemistry, 100(8-10), 693-716. https://doi.org/10.1080/02772248.2019.1579818
Hose, J. E., Martin, G. G., & Gerard, A. S. (1990). A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biology Bulletin, 178(1), 33-45.
Mancuso, M., Zaccone, R., Carella, F., Maiolino, P., & Vico, G. D. (2013). First Episode of Shell Disease Syndrome in Carcinus aestuarii (Crustacea: Decapoda: Portunidae) in the Volturno River. Journal of Aquaculture Research & Development, 4(5), 191. https://doi.org/10.4172/2155-9546.1000191
Matozzo, V., & Marin, M. G. (2010). A first cytochemical study of hemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda). European Journal of Histochemistry, European Journal of Histochemistry, 54(1). https://doi.org/10.4081/ejh.2010.e9
Matozzo, V., Gallo, C., & Marin, M. G. (2011). Effects of temperature on cellular and biochemical parameters in the crab Carcinus aestuarii (Crustacea, Decapoda). Marine Environmental Research, 71(5), 351–356. https://doi.org/10.1016/j.marenvres.2011.04.001
Matozzo, V., Boscolo, A., & Marin, M. G. (2013). Seasonal and gender-related differences in morphometric features and cellular and biochemical parameters of Carcinus aestuarii from the Lagoon of Venice. Marine Environmental Research, 89, 21-28. https://doi.org/10.1016/j.marenvres.2013.04.007
Matozzo, V., Pagano, M., Spinelli, A., Caicci, F., & Faggio, C. (2016). Pinna nobilis: a big bivalve with big hemocytes? Fish and Shellfish Immunology, 55, 529–534. https://doi.org/10.1016/j.fsi.2016.06.039
Mello, D.F., Proenca, L.A., & Barracco, M.A. (2010). Comparative study of various immune parameters in three bivalve species during a natural bloom of Dinophysis acuminata in Santa Catarina Island, Brazil. Toxins, 2(5), 1166–1178. https://doi.org/10.3390/toxins2051166
Petri D., Glover C. N., Ylving S., Kolas K., Fremmersvik G., Waagbo R. & Berntssen M. H. G. (2006). Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by hematology, blood biochemistry, and growth parameters. Aquatic Toxicology, 80(3), 207-216. https://doi.org/10.1016/j.aquatox.2006.07.019
Pugazhvendan, S. R., & Soundararajan, M. (2012). Quantitative changes of total haemocytes count during metamorphosis and reproduction in the insect Chrysocoris purpureus (Hemiptera: Pentatomidae). African Journal of Basic & Applied Sciences, 4(5), 143-145. https://doi.org/10.5829/idosi.ajbas.2012.4.5.6576
Qyli, M., Aliko, V., & Faggio, C. (2020). Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 231, 108739. https://doi.org/10.1016/j.cbpc.2020.108739
Sawyer, T. K., Cox, R., & Higginbottom, M. (1970). Hemocyte values in healthy blue crabs, Callinectes sapidus, and crabs infected with the amoeba, Paramoeba perniciosa. Journal of Invertebrate Pathology, 15(3), 440-446. https://doi.org/10.1016/0022-2011(70)90188-6
Söderhäll, K. & Smith, V.J. (1983). Separation of the haemocyte populations of Carcinus maenus and other marine decapods, and prophenoloxidase distribution. Developmental & Comparative Immunology, 7(2), 229-239. https://doi.org/10.1016/0145-305X(83)90004-6
Türeli, C. (1999). İskenderun Körfezi'ndeki Mavi Yengeç (Callinectes sapidus RATHBUN, 1896)'in Biyolojik Özellikleri [Doctoral Thesis, Çukurova University].
Wang, Y., Hu, M., Chiang, H. W. L., Shin, P. K. S., & Cheung, S. G. (2012). Characterization of subpopulation and immune-revelated parameters of hemocytes in the green-lipped mussel Perna viridis. Fish and Shellfish Immunology, 31, 381-390. https://doi.org/10.1016/j.fsi.2011.08.024
The Effects of Environmental Variables and Morphometry on Hemocyte Structure in the Hemolymph of Portunid Crab, Carcinus aestuarii Nardo, 1847 in Çardak Lagoon (Çanakkale Strait)
Year 2022,
Volume: 18 Issue: 4, 505 - 512, 01.12.2022
This study aims to determine the relationship between hemocyte count and hemocyte types with environmental variables and morphometric measurements in Carcinus aestuarii. A total of 240 crabs were seasonally collected in Çardak Lagoon June 2018, October 2018, February 2019, and May 2019. The average carapace length (CL) was 44.66±0.44 mm, the mean carapace width (CW) was 37.71±0.38 mm and the mean weight was 28.49±0.88 g. Crab specimens were anesthetized on ice for 10 min, and 500 µL of hemolymph was collected from the legs of each crab using a 1-mL plastic syringe. After sampling, hemolymph samples were mixed with the anticoagulant, which was applied to a Thoma slide and examined under a microscope at X40 magnification. The total hemocyte count (THC) was calculated as 13.91±8.08x106 (cells/mm3). Differential hemocyte count (DHC) 53.25±0.6% for hyalinocyte, 26.15±0.23% for semi-granulocyte, and 20.6±0.06% for granulocyte and 3 different cell types were observed. The most dominant cell type is hyalinocyte cells.
Adeogun, A. O., Salami, O. A., Chukwuka, A. V., & Alaka, O. O. (2015). Hematological and serum biochemical profile of the blue crab, Callinectes amnicola from two tropical lagoon ecosystems. African Journal of Biomedical Research, 18(3), 233– 247.
Aliko, V., Hajdaraj, G., Caci, A., & Faggio, C. (2015). Copper induced lysosomal membrane destabilization in haemolymph cells of Mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Brazilian Archives of Biology and Technology, 58(5), 750-756. https://doi.org/10.1590/S1516-89132015050244
Bachau, A. G. (1981). Crustaeceans. Invertebrate blood cells, 2, 385-420.
Bauchau A. G, & Plaquet J. C. (1973). Variation du nombre des hémocytes chez les Crustacés Brachyoures. Crustaceana, 24(2), 215-23. https://doi.org/10.1163/156854073X00380
Başusta A, & Şen D. (2004). Keban Baraj Gölü’nde yaşayan Acanthobrama marmid (Heckel,1843) de kan parametrelerinin incelenmesi. Turkish Journal of Veterinary and Animal Sciences, 28(1), 1-6.
Battison, A., Cawthorn, R., & Horney, B. (2003). Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). Journal of Invertebrate Pathology, 84(3), 177-197. https://doi.org/10.1016/j.jip.2003.11.005
Blaxhall, P. C., & Daisley, K. W. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, 5(6), 771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x
Burgos-Aceves, M. A., & Faggio, C. (2017). An approach to the study of the immunity functions of bivalve hemocytes: physiology and molecular aspects. Fish and Shellfish Immunology, 67, 513–517. https://doi.org/10.1016/j.fsi.2017.06.042
Clare, A. S., & Lumb, G. (1994). Identification of hemocytes and their role in clotting in the blue crab Callinectes sapidus. Marine Biology, 118(4), 601-610. https://doi.org/10.1007/BF00347507
Coles, J. A., Farley, S. R. & Pipe, R. K. (1994). Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquatic Toxicology, 30(4), 367–379. https://doi.org/10.1016/0166-445X(94)00051-4
Dutta, S., Biswas, B., & Guha, B. (2021). Sex specific quantitative estimation of total haemocytes in mud crab, Scylla serrata (Forskâl, 1775): An evidenced based report. Journal of Entomology and Zoology Studies, 9(4), 439-441. https://doi.org/10.22271/j.ento.2021.v9.i4f.8814
Gürkan, M. (2018). Effects of three different nanoparticles on bioaccumulation, oxidative stress, osmoregulatory, and immune responses of Carcinus aestuarii. Toxicological & Environmental Chemistry, 100(8-10), 693-716. https://doi.org/10.1080/02772248.2019.1579818
Hose, J. E., Martin, G. G., & Gerard, A. S. (1990). A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biology Bulletin, 178(1), 33-45.
Mancuso, M., Zaccone, R., Carella, F., Maiolino, P., & Vico, G. D. (2013). First Episode of Shell Disease Syndrome in Carcinus aestuarii (Crustacea: Decapoda: Portunidae) in the Volturno River. Journal of Aquaculture Research & Development, 4(5), 191. https://doi.org/10.4172/2155-9546.1000191
Matozzo, V., & Marin, M. G. (2010). A first cytochemical study of hemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda). European Journal of Histochemistry, European Journal of Histochemistry, 54(1). https://doi.org/10.4081/ejh.2010.e9
Matozzo, V., Gallo, C., & Marin, M. G. (2011). Effects of temperature on cellular and biochemical parameters in the crab Carcinus aestuarii (Crustacea, Decapoda). Marine Environmental Research, 71(5), 351–356. https://doi.org/10.1016/j.marenvres.2011.04.001
Matozzo, V., Boscolo, A., & Marin, M. G. (2013). Seasonal and gender-related differences in morphometric features and cellular and biochemical parameters of Carcinus aestuarii from the Lagoon of Venice. Marine Environmental Research, 89, 21-28. https://doi.org/10.1016/j.marenvres.2013.04.007
Matozzo, V., Pagano, M., Spinelli, A., Caicci, F., & Faggio, C. (2016). Pinna nobilis: a big bivalve with big hemocytes? Fish and Shellfish Immunology, 55, 529–534. https://doi.org/10.1016/j.fsi.2016.06.039
Mello, D.F., Proenca, L.A., & Barracco, M.A. (2010). Comparative study of various immune parameters in three bivalve species during a natural bloom of Dinophysis acuminata in Santa Catarina Island, Brazil. Toxins, 2(5), 1166–1178. https://doi.org/10.3390/toxins2051166
Petri D., Glover C. N., Ylving S., Kolas K., Fremmersvik G., Waagbo R. & Berntssen M. H. G. (2006). Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by hematology, blood biochemistry, and growth parameters. Aquatic Toxicology, 80(3), 207-216. https://doi.org/10.1016/j.aquatox.2006.07.019
Pugazhvendan, S. R., & Soundararajan, M. (2012). Quantitative changes of total haemocytes count during metamorphosis and reproduction in the insect Chrysocoris purpureus (Hemiptera: Pentatomidae). African Journal of Basic & Applied Sciences, 4(5), 143-145. https://doi.org/10.5829/idosi.ajbas.2012.4.5.6576
Qyli, M., Aliko, V., & Faggio, C. (2020). Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 231, 108739. https://doi.org/10.1016/j.cbpc.2020.108739
Sawyer, T. K., Cox, R., & Higginbottom, M. (1970). Hemocyte values in healthy blue crabs, Callinectes sapidus, and crabs infected with the amoeba, Paramoeba perniciosa. Journal of Invertebrate Pathology, 15(3), 440-446. https://doi.org/10.1016/0022-2011(70)90188-6
Söderhäll, K. & Smith, V.J. (1983). Separation of the haemocyte populations of Carcinus maenus and other marine decapods, and prophenoloxidase distribution. Developmental & Comparative Immunology, 7(2), 229-239. https://doi.org/10.1016/0145-305X(83)90004-6
Türeli, C. (1999). İskenderun Körfezi'ndeki Mavi Yengeç (Callinectes sapidus RATHBUN, 1896)'in Biyolojik Özellikleri [Doctoral Thesis, Çukurova University].
Wang, Y., Hu, M., Chiang, H. W. L., Shin, P. K. S., & Cheung, S. G. (2012). Characterization of subpopulation and immune-revelated parameters of hemocytes in the green-lipped mussel Perna viridis. Fish and Shellfish Immunology, 31, 381-390. https://doi.org/10.1016/j.fsi.2011.08.024
Acar, S., & Ateş, A. S. (2022). The Effects of Environmental Variables and Morphometry on Hemocyte Structure in the Hemolymph of Portunid Crab, Carcinus aestuarii Nardo, 1847 in Çardak Lagoon (Çanakkale Strait). Acta Aquatica Turcica, 18(4), 505-512. https://doi.org/10.22392/actaquatr.1150615