Research Article
BibTex RIS Cite

Üç Boyutlu Yazıcılarda Kullanılan Daimi Dental Restoratif Materyallerin Mikrosertlik Açısından Değerlendirilmesi

Year 2025, Volume: 11 Issue: 2, 117 - 125, 31.08.2025

Abstract

Amaç: Bu çalışmanın amacı, üç boyutlu yazıcılarla üretilen daimi restoratif materyallerin günlük hayatta sıkça tüketilen içeceklere maruziyetinin mikrosertlik değerlerine etkisinin değerlendirilmesidir.
Gereç ve Yöntemler: Üç farklı 3-B daimi restoratif materyal (Crowntec, SAREMCO; Permanent Crown Resin, FORMLABS; VarseoSmile TriniQ, BEGO) kullanılarak 10x2 mm disk şeklinde 120 adet örnek ve CAD/CAM blok (Cerasmart, GC) kullanılarak 40 adet örnek (n=10) hazırlandı. Üç boyutlu yazıcıda üretilen materyallerin dijital tasarımları SolidWorks 2023 programı ile yapıldı. GC bloktan 2 mm kalınlığında kesitler alındı. Örneklerin yüzeyleri alüminyum oksit kaplı diskler (Sof-lex, 3M) ve elmas emdirilmiş çift aşamalı polisaj sistemi (Eve Diacomp-Plus) kullanılarak cilalandı. Örnekler, ISO/TS 1140539 standartlarına göre 5/55°C distile suda 5000 devirde (6 aylık yaşlandırmaya denk gelen) termal döngüye maruz bırakıldıktan sonra distile su, kahve, kola ve vişne suyunda 6 aylık klinik kullanıma denk gelen sürede bekletildi. Mikrosertlik (VHN) değerleri başlangıç (t0), termal döngü sonrası (t1) ve solüsyonlarda bekletme sonrası (t2) olmak üzere 3 farklı zamanda ölçüldü. Veriler üç yönlü varyans analizi (ANOVA) ve Tukey HSD post hoc testi ile değerlendirildi (p<0,05).
Bulgular: Tüm solüsyon gruplarında ve tüm ölçüm zamanlarında en yüksek VHN değerleri Cerasmart blokta görülürken, VarseoSmile TriniQ en düşük değerleri sergiledi. Permanent Crown Resin ve Crowntec benzer VHN değerleri gösterdi (p>0,05). Permanent Crown Resin kahve ve distile suda, kola ve vişne suyuna göre anlamlı derecede yüksek mikrosertlik değerleri sergiledi (p<0,01). VarseoSmile TriniQ, Crowntec ve Cerasmart için farklı solüsyonların mikrosertlik üzerine anlamlı bir etkisi gözlenmedi (p>0,05).
Sonuç: Bu çalışmanın limitasyonları dahilinde, kullanılan 3-B daimi restoratif materyallerin mikrosertlik değerleri kahve, kola ve vişne suyundan etkilendi ve mikrosertlik değerlerinde azalma görüldü.

References

  • Karademir SA, Atasoy S, Akarsu S, Karaaslan E. Effects of post-curing conditions on degree of conversion, microhardness, and stainability of 3D printed permanent resins. BMC Oral Health. 2025;25:304.
  • Pereira ALC, Dias ACM, Santos KS, Andrade JO, Boa PWM, Medeiros AKB. Influence of salivary pH on the surface, mechanical, physical, and cytotoxic properties of resins for 3D-printed and heatpolymerized denture base. J Dent. 2025;156:105721.
  • Oh R, Lim JH, Lee CG, Lee KW, Kim SY, Kim JE. Effects of washing solution temperature on the biocompatibility and mechanical properties of 3D-Printed dental resin material. J Mech Behav Biomed Mater. 2023;143:105906.
  • Al-Dulaijan YA, Alsulaimi L, Alotaibi R et al. Comparative evaluation of surface roughness and hardness of 3D printed resins. Materials (Basel). 2022;15(19):6822.
  • Castro EF, Nima G, Rueggeberg FA, Giannini M. Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations. J Mech Behav Biomed Mater. 2022;136:105479.
  • Alshamrani AA, Raju R, Ellakwa A. Effect of printing layer thickness and postprinting conditions on the flexural strength and hardness of a 3D-printed resin. Biomed Res Int. 2022;2022:8353137.
  • Hanon MM, Zsidai L. Tribological and mechanical properties investigation of 3D printed polymers using DLP technique. In: Dahham OS, Zulkepli NN. AIP Conference Proceedings. Melville (NY): AIP Publishing; 2020. p. 020205.
  • Tahayeri A, Morgan M, Fugolin AP et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34(2):192- 200. doi:10.1016/j.dental.2017.10.003
  • Kim D, Shim JS, Lee D et al. Effects of postcuring time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers. 2020;12(11):2762. doi:10.3390/ polym12112762
  • Katheng A, Prawatvatchara W, Tonprasong W, Namano S, Kongkon P. Effect of postrinsing times and methods on surface roughness, hardness, and polymerization of 3D-printed photopolymer resin. Eur J Dent. 2025;19:154-64.
  • Falahchai M, Ghavami-Lahiji M, Rasaie V, Amin M, Asli HN. Comparison of mechanical properties, surface roughness, and color stability of 3D-printed and conventional heat-polymerizing denture base materials. J Prosthet Dent. 2023;130(2):266.e1-8.
  • Lambart AL, Xepapadeas AB, Koos B, Lib P, Spintzyk S. Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity. Dent Mater. 2022;38(8):1344-53.
  • Cai H, Lee MY, Jiang HB, Kwon JS. Influence of various cleaning solutions on the geometry, roughness, gloss, hardness, and flexural strength of 3D-printed zirconia. Sci Rep. 2024;14:22551.
  • Reymus M, Stawarczyk B. Influence of different postpolymerization strategies and artificial aging on hardness of 3D-printed resin materials: An in vitro study. Int J Prosthodont. 2020;33(6):634-40.
  • Mohammed AQ, Mohammed AK. Evaluation the biocompatibility and hardness of 3D printed resin material with different times and many rinsing solutions. AIP Conf Proc. 2024;3097:030023.
  • Papathanasiou I, Kamposiora P, Dimitriadis K, Papavasiliou G, Zinelis S. In vitro evaluation of CAD/ CAM composite materials. J Dent. 2023;136:104623. doi:10.1016/j.jdent.2023.104623
  • Goujat A, Abouelleil H, Colon P et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent. 2017;118(5):686–693. doi:10.1016/j.prosdent.2017.03.001
  • Mudhaffer S, Althagafi R, Haider J, Satterthwaite J, Silikas N. Effects of printing orientation and artificial ageing on martens hardness and indentation modulus of 3D printed restorative resin materials. Dent Mater. 2024;40:1003-14.
  • Barutcigil K, Dündar A, Batmaz SG, Yıldırım K, Barutçugil Ç. Do resin-based composite CAD/ CAM blocks release monomers? Clin Oral Investig. 2021;25(1):329–36. doi:10.1007/s00784-020-03377-3
  • Yılmaz Atalı P, Doğu Kaya B, Manav Özen A et al. Assessment of micro-hardness, degree of conversion, and flexural strength for single-shade universal resin composites. Polymers. 2022;14(22):4987. doi:10.3390/polym14224987
  • Demirsoy KK, Buyuk SK, Akarsu S, Kaplan MH, Simsek H, Abay F. Color alterations, flexural strength, and microhardness of 3D-Printed resins treated in different coloring agents. Int J Prosthodont. 2025;38(1):111.
  • Santi MR, Khodor N, Sekula M, Donatelli D, De Souza GM. Effect of cleaning solution on surface properties of 3D-printed denture materials. J Prosthodont. 2024;1-7.
  • Kim MC, Byeon DJ, Jeong EJ, Go HB, Yang SY. Color stability, surface, and physicochemical properties of three-dimensional printed denture base resin reinforced with different nanofillers. Sci Rep. 2024;14(1):1842. doi:10.1038/s41598-024-51486-w
  • Yıldırım M, Aykent F, Özdoğan MS. Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CADCAM milled interim prosthodontic materials after thermocycling. J Adv Prosthodont. 2024;16:115-25.
  • Temizci T, Bozoğulları HN. Effect of thermocycling on the mechanical properties of permanent compositebased CAD-CAM restorative materials produced by additive and subtractive manufacturing techniques. BMC Oral Health. 2024;24(1):334. doi:10.1186/ s12903-024-04016-z.

Evaluation of Microhardness of 3D Printable Permanent Dental Restorative Materials

Year 2025, Volume: 11 Issue: 2, 117 - 125, 31.08.2025

Abstract

Objectives: This study aimed to evaluate the microhardness of 3D-printed permanent restorative materials exposed to commonly consumed beverages.
Material and Methods: Three different 3D-printed permanent restorative materials (Crowntec, SAREMCO; Permanent Crown Resin, FORMLABS; VarseoSmile TriniQ, BEGO) were used to prepare 120 disk-shaped (10×2 mm ) specimens and one CAD/CAM block (Cerasmart, GC) was used to prepare 40 specimens (n=10). Designs were created with SolidWorks 2023, and 2 mm slices were obtained from the GC block. Specimen surfaces were polished with aluminum oxide disks (Sof-lex, 3M) and a diamond-impregnated polishing system (Eve Diacomp-Plus). Specimens were subjected to thermocycle (5-55°C, 5000 cycles) in distilled water, according to ISO/TS 11405:39, simulating six months of clinical aging. They were then immersed in distilled water, coffee, cola, and cherry juice corresponding to six months. Microhardness (VHN) was measured at baseline (t₀), after thermal cycling (t₁), and after immersion (t₂) using a Vickers tester. Data were analyzed by three-way ANOVA and Tukey HSD post hoc test (p<0.05).
Results: Cerasmart showed the highest and VarseoSmile TriniQ the lowest VHN values among all groups and times. Permanent Crown Resin and Crowntec exhibited similar VHN values. Permanent Crown Resin had significantly higher VHN in coffee and distilled water than in cola and cherry juice (p<0.01). Solution had no effect on VHN for VarseoSmile TriniQ, Crowntec, or Cerasmart (p>0.05).
Conclusion: Within the limitations of this study, the microhardness values of the tested 3D permanent restorative materials were affected by coffee, cola, and cherry juice, leading to a decrease in microhardness.

References

  • Karademir SA, Atasoy S, Akarsu S, Karaaslan E. Effects of post-curing conditions on degree of conversion, microhardness, and stainability of 3D printed permanent resins. BMC Oral Health. 2025;25:304.
  • Pereira ALC, Dias ACM, Santos KS, Andrade JO, Boa PWM, Medeiros AKB. Influence of salivary pH on the surface, mechanical, physical, and cytotoxic properties of resins for 3D-printed and heatpolymerized denture base. J Dent. 2025;156:105721.
  • Oh R, Lim JH, Lee CG, Lee KW, Kim SY, Kim JE. Effects of washing solution temperature on the biocompatibility and mechanical properties of 3D-Printed dental resin material. J Mech Behav Biomed Mater. 2023;143:105906.
  • Al-Dulaijan YA, Alsulaimi L, Alotaibi R et al. Comparative evaluation of surface roughness and hardness of 3D printed resins. Materials (Basel). 2022;15(19):6822.
  • Castro EF, Nima G, Rueggeberg FA, Giannini M. Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations. J Mech Behav Biomed Mater. 2022;136:105479.
  • Alshamrani AA, Raju R, Ellakwa A. Effect of printing layer thickness and postprinting conditions on the flexural strength and hardness of a 3D-printed resin. Biomed Res Int. 2022;2022:8353137.
  • Hanon MM, Zsidai L. Tribological and mechanical properties investigation of 3D printed polymers using DLP technique. In: Dahham OS, Zulkepli NN. AIP Conference Proceedings. Melville (NY): AIP Publishing; 2020. p. 020205.
  • Tahayeri A, Morgan M, Fugolin AP et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34(2):192- 200. doi:10.1016/j.dental.2017.10.003
  • Kim D, Shim JS, Lee D et al. Effects of postcuring time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers. 2020;12(11):2762. doi:10.3390/ polym12112762
  • Katheng A, Prawatvatchara W, Tonprasong W, Namano S, Kongkon P. Effect of postrinsing times and methods on surface roughness, hardness, and polymerization of 3D-printed photopolymer resin. Eur J Dent. 2025;19:154-64.
  • Falahchai M, Ghavami-Lahiji M, Rasaie V, Amin M, Asli HN. Comparison of mechanical properties, surface roughness, and color stability of 3D-printed and conventional heat-polymerizing denture base materials. J Prosthet Dent. 2023;130(2):266.e1-8.
  • Lambart AL, Xepapadeas AB, Koos B, Lib P, Spintzyk S. Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity. Dent Mater. 2022;38(8):1344-53.
  • Cai H, Lee MY, Jiang HB, Kwon JS. Influence of various cleaning solutions on the geometry, roughness, gloss, hardness, and flexural strength of 3D-printed zirconia. Sci Rep. 2024;14:22551.
  • Reymus M, Stawarczyk B. Influence of different postpolymerization strategies and artificial aging on hardness of 3D-printed resin materials: An in vitro study. Int J Prosthodont. 2020;33(6):634-40.
  • Mohammed AQ, Mohammed AK. Evaluation the biocompatibility and hardness of 3D printed resin material with different times and many rinsing solutions. AIP Conf Proc. 2024;3097:030023.
  • Papathanasiou I, Kamposiora P, Dimitriadis K, Papavasiliou G, Zinelis S. In vitro evaluation of CAD/ CAM composite materials. J Dent. 2023;136:104623. doi:10.1016/j.jdent.2023.104623
  • Goujat A, Abouelleil H, Colon P et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent. 2017;118(5):686–693. doi:10.1016/j.prosdent.2017.03.001
  • Mudhaffer S, Althagafi R, Haider J, Satterthwaite J, Silikas N. Effects of printing orientation and artificial ageing on martens hardness and indentation modulus of 3D printed restorative resin materials. Dent Mater. 2024;40:1003-14.
  • Barutcigil K, Dündar A, Batmaz SG, Yıldırım K, Barutçugil Ç. Do resin-based composite CAD/ CAM blocks release monomers? Clin Oral Investig. 2021;25(1):329–36. doi:10.1007/s00784-020-03377-3
  • Yılmaz Atalı P, Doğu Kaya B, Manav Özen A et al. Assessment of micro-hardness, degree of conversion, and flexural strength for single-shade universal resin composites. Polymers. 2022;14(22):4987. doi:10.3390/polym14224987
  • Demirsoy KK, Buyuk SK, Akarsu S, Kaplan MH, Simsek H, Abay F. Color alterations, flexural strength, and microhardness of 3D-Printed resins treated in different coloring agents. Int J Prosthodont. 2025;38(1):111.
  • Santi MR, Khodor N, Sekula M, Donatelli D, De Souza GM. Effect of cleaning solution on surface properties of 3D-printed denture materials. J Prosthodont. 2024;1-7.
  • Kim MC, Byeon DJ, Jeong EJ, Go HB, Yang SY. Color stability, surface, and physicochemical properties of three-dimensional printed denture base resin reinforced with different nanofillers. Sci Rep. 2024;14(1):1842. doi:10.1038/s41598-024-51486-w
  • Yıldırım M, Aykent F, Özdoğan MS. Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CADCAM milled interim prosthodontic materials after thermocycling. J Adv Prosthodont. 2024;16:115-25.
  • Temizci T, Bozoğulları HN. Effect of thermocycling on the mechanical properties of permanent compositebased CAD-CAM restorative materials produced by additive and subtractive manufacturing techniques. BMC Oral Health. 2024;24(1):334. doi:10.1186/ s12903-024-04016-z.
There are 25 citations in total.

Details

Primary Language English
Subjects Restorative Dentistry
Journal Section Research Article
Authors

Nina Farshidian 0000-0002-4850-5994

Ezgi Acar 0000-0001-5111-1542

Elif Nur Kaya 0009-0005-6066-0582

Pınar Yılmaz Atalı 0000-0003-3121-360X

Bilge Tarçın 0000-0002-9220-8671

Publication Date August 31, 2025
Submission Date May 8, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

Vancouver Farshidian N, Acar E, Kaya EN, Yılmaz Atalı P, Tarçın B. Evaluation of Microhardness of 3D Printable Permanent Dental Restorative Materials. Aydin Dental Journal. 2025;11(2):117-25.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)