Research Article
BibTex RIS Cite

Evaluation of Fracture Resistance of Zirconia and Resin Nanoceramic Crowns Fabricated with CAD/CAM System

Year 2025, Volume: 11 Issue: 2, 147 - 153, 31.08.2025

Abstract

Objectives: To compare the fracture resistance of resin nanoceramic crown restorations with monolithic zirconia and bilayered zirconia-based crown restorations.
Materials and Methods.: A total of 90 crowns were fabricated. They were divided into 3 equal groups (n = 30) according to the type of material used: group U, resin nanoceramic (LavaTM Ultimate), group MZ, monolithic zirconia (LavaTM Frame), and group BZ (bilayered zirconia substructure with veneering ceramic). Crowns were cemented on prepared teeth using a self-adhesive resin cement (Rely X U100). Fracture resistance was evaluated using a compression test.
Results: Two-way ANOVA analysis was used to evaluate the differences between groups and Tukey HSD test was used for multiple group comparisons. In the statistical evaluation, a significant difference was found between all groups in terms of fracture resistance (P<.05). In pairwise comparison, a significant difference was detected between each group (P<.05). The highest fracture resistance was seen in group Mz and the lowest fracture resistance was seen in group U.
Conclusion: Resin nanoceramic crown restorations, monolithic and veneered zirconia crowns can withstand normal clinical conditions and their fracture resistance exceeds average masticatory forces

References

  • Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res. 2007;18 Suppl 3:73-85.
  • Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012;107:170-7.
  • Sarikaya I, Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health. 2018;18:146.
  • Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20:383-8.
  • Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors related to failures with zirconiabased restorations: an up to 9-year retrospective study. J Dent. 2013;41:1164-74.
  • Baldassarri M, Stappert CF, Wolff MS, Thompson VP, Zhang Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent Mater. 2012;28:873-9.
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lumkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48:369-80.
  • Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97:140-7.
  • Tajti P, Solyom E, Czumbel LM et al. Monolithic zirconia as a valid alternative to metal-ceramic for implant-supported single crowns in the posterior region: A systematic review and meta-analysis of randomized controlled trials. J Prosthet Dent. 2024;132:881-9.
  • Leitao C, Fernandes GVO, Azevedo LPP, Araujo FM, Donato H, Correia ARM. Clinical performance of monolithic CAD/CAM tooth-supported zirconia restorations: systematic review and meta-analysis. J Prosthodont Res. 2022;66:374-84.
  • Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res. 2016;95:487-95.
  • Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114:587-93.
  • Laborie M, Naveau A, Menard A. CAD-CAM resin-ceramic material wear: A systematic review. J Prosthet Dent. 2024;131:812-8.
  • Hassan A, Hamdi K, Ali AI, Al-Zordk W, Mahmoud SH. Clinical performance comparison between lithium disilicate and hybrid resin nano-ceramic CAD/CAM onlay restorations: a two-year randomized clinical split-mouth study. Odontology. 2024;112:601-15.
  • Hamza TA, Sherif RM. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. J Prosthodont. 2019;28:e259-e64.
  • Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro. Dent Mater. 2008;24:433-49.
  • Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G. In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont. 2000;13:387-91.
  • Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont. 1993;6:462-7.
  • Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont. 1995;8:105-16.
  • Attia A, Abdelaziz KM, Freitag S, Kern M. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J Prosthet Dent. 2006;95:117- 23.
  • Magne P, Carvalho AO, Bruzi G, Anderson RE, Maia HP, Giannini M. Influence of no-ferrule and no-post buildup design on the fatigue resistance of endodontically treated molars restored with resin nanoceramic CAD/CAM crowns. Oper Dent. 2014;39:595-602.
  • Zierden K, Acar J, Rehmann P, Wostmann B. Wear and Fracture Strength of New Ceramic Resins for Chairside Milling. Int J Prosthodont. 2018;31:74-6.
  • Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont. 2012;4:162-9.
  • Zhang Y, Mai Z, Barani A, Bush M, Lawn B. Fracture-resistant monolithic dental crowns. Dent Mater. 2016;32:442-9.
  • Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28:449-56.
  • Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. Biomed Res Int. 2015;2015:418641.
  • Ezzat Y, Sharka R, Rayyan M, Al-Rafee M. Fracture Resistance of Monolithic High-Translucency Crowns Versus Porcelain-Veneered Zirconia Crowns After Artificial Aging: An In Vitro Study. Cureus. 2021;13:e20640.
  • Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent. 2012;40:921-8.
  • Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999; 81: 652-61.

CAD/CAM Sistemi ile Üretilen Zirkonya ve Rezin Nanoseramik Kuronların Kırılma Dirençlerinin Değerlendirilmesi

Year 2025, Volume: 11 Issue: 2, 147 - 153, 31.08.2025

Abstract

Amaç: Bu çalışmanın amacı rezin nanoseramik kuron restorasyonların kırılma direncini monolitik zirkonyum ve veneerlenen zirkonyum alt yapılı kuron restorasyonlarıyla karşılaştırmaktır.
Gereç ve Yöntemler: Toplam 90 kuron restorasyonu üretildi. Kullanılan materyalin türüne göre 3 eşit gruba (n = 30) ayrıldı: grup U, rezin nanoseramik (LavaTM Ultimate) kuronlar, grup MZ, monolitik zirkonyum (LavaTM Frame) kuronlar ve grup BZ, düşük ısı porseleni ile veneerlenen zirkonyum alt yapılı kuronlar. Restorasyonlar self adeziv rezin siman (Rely X U100) ile prepare edilen dişler üzerine simante edildi. Kırılma direnci kompresyon testi uygulanarak değerlendirildi.
Bulgular: Gruplar arasındaki farkları değerlendirmek için iki yönlü ANOVA analizi, çoklu grup karşılaştırmaları için ise Tukey HSD testi kullanıldı. Yapılan istatistiksel değerlendirmede kırılma dirençleri açısından tüm gruplar arasında anlamlı fark tespit edildi (P<.05). İkili karşılaştırmada her bir grup arasında anlamlı fark tespit edildi. (P<.05) En yüksek kırılma direnci Grup Mz’de, en düşük kırılma direnci grup U’da görüldü.
Sonuç: Resin nanoseramik kuron restorasyonları, monolitik ve veneerlenen zirkonyum kuronlar normal klinik koşullara dayanabilir ve kırılma dirençleri ortalama çiğneme kuvvetlerinin üzerindedir.

References

  • Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res. 2007;18 Suppl 3:73-85.
  • Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012;107:170-7.
  • Sarikaya I, Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health. 2018;18:146.
  • Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20:383-8.
  • Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors related to failures with zirconiabased restorations: an up to 9-year retrospective study. J Dent. 2013;41:1164-74.
  • Baldassarri M, Stappert CF, Wolff MS, Thompson VP, Zhang Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent Mater. 2012;28:873-9.
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lumkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48:369-80.
  • Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97:140-7.
  • Tajti P, Solyom E, Czumbel LM et al. Monolithic zirconia as a valid alternative to metal-ceramic for implant-supported single crowns in the posterior region: A systematic review and meta-analysis of randomized controlled trials. J Prosthet Dent. 2024;132:881-9.
  • Leitao C, Fernandes GVO, Azevedo LPP, Araujo FM, Donato H, Correia ARM. Clinical performance of monolithic CAD/CAM tooth-supported zirconia restorations: systematic review and meta-analysis. J Prosthodont Res. 2022;66:374-84.
  • Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res. 2016;95:487-95.
  • Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114:587-93.
  • Laborie M, Naveau A, Menard A. CAD-CAM resin-ceramic material wear: A systematic review. J Prosthet Dent. 2024;131:812-8.
  • Hassan A, Hamdi K, Ali AI, Al-Zordk W, Mahmoud SH. Clinical performance comparison between lithium disilicate and hybrid resin nano-ceramic CAD/CAM onlay restorations: a two-year randomized clinical split-mouth study. Odontology. 2024;112:601-15.
  • Hamza TA, Sherif RM. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. J Prosthodont. 2019;28:e259-e64.
  • Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro. Dent Mater. 2008;24:433-49.
  • Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G. In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont. 2000;13:387-91.
  • Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont. 1993;6:462-7.
  • Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont. 1995;8:105-16.
  • Attia A, Abdelaziz KM, Freitag S, Kern M. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J Prosthet Dent. 2006;95:117- 23.
  • Magne P, Carvalho AO, Bruzi G, Anderson RE, Maia HP, Giannini M. Influence of no-ferrule and no-post buildup design on the fatigue resistance of endodontically treated molars restored with resin nanoceramic CAD/CAM crowns. Oper Dent. 2014;39:595-602.
  • Zierden K, Acar J, Rehmann P, Wostmann B. Wear and Fracture Strength of New Ceramic Resins for Chairside Milling. Int J Prosthodont. 2018;31:74-6.
  • Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont. 2012;4:162-9.
  • Zhang Y, Mai Z, Barani A, Bush M, Lawn B. Fracture-resistant monolithic dental crowns. Dent Mater. 2016;32:442-9.
  • Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28:449-56.
  • Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. Biomed Res Int. 2015;2015:418641.
  • Ezzat Y, Sharka R, Rayyan M, Al-Rafee M. Fracture Resistance of Monolithic High-Translucency Crowns Versus Porcelain-Veneered Zirconia Crowns After Artificial Aging: An In Vitro Study. Cureus. 2021;13:e20640.
  • Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent. 2012;40:921-8.
  • Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999; 81: 652-61.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Prosthodontics
Journal Section Research Article
Authors

Ceren Küçük 0000-0002-9044-1912

Atilla Sertgoz 0000-0002-3018-4467

Publication Date August 31, 2025
Submission Date June 13, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

Vancouver Küçük C, Sertgoz A. CAD/CAM Sistemi ile Üretilen Zirkonya ve Rezin Nanoseramik Kuronların Kırılma Dirençlerinin Değerlendirilmesi. Aydin Dental Journal. 2025;11(2):147-53.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)