Research Article
BibTex RIS Cite

KIBT Görüntülemede Kantitatif Görüntü Kalitesi Testleri İçin Antropometrik ve Kalite Güvence Fantomlarının Karşılaştırılması

Year 2025, Volume: 14 Issue: 2, 101 - 108, 26.05.2025
https://doi.org/10.54617/adoklinikbilimler.1546507

Abstract

Amaç: Bu çalışmanın amacı, bir antropometrik fantom ve bir kalite güvence (KG) fantomunun konik-ışınlı bilgisayarlı tomografi (KIBT) ile üç farklı doz protokolünde görüntülenmesi ve seçilen kesitlerde antropometrik fantom ile hesaplanan kantitatif görüntü kalitesi testi değerlerinin KG fantomu sonuçlarıyla kıyaslanmasıdır. Böylece, antropometrik fantom kesitleriyle yapılan görüntü kalitesi testlerinin geçerliliği hakkında bilgi üretimi hedeflenmektedir.
Gereç ve Yöntem: Alderson-Rando® fantomu (Radiology Support Devices, Long Beach, Kaliforniya) ve KG fantomu (QR Verona, İtalya) MyRay Hyperion X9 Pro (Cefla, Imola, İtalya) KIBT cihazı ile görüntülendi.
Görüş alanı 13x10 cm olarak seçildi ve diğer parametreler sabit tutulurken üç farklı görüntüleme modu (Düşük Doz, Normal, Yüksek Kalite) uygulandı. Antropometrik fantom hacimlerinden üçer kesit (paranazal sinüs, maksilla, mandibula) ve KG fantomundan bir kesit seçildi. Toplam 12 görüntü örneği sinyal-gürültü oranı ve kontrast-gürültü oranı hesaplamaları için ImageJ yazılımına aktarıldı. Üç ve daha fazla değişken (Düşük Doz, Normal, Yüksek Kalite, veya paranazal sinüs, maksilla, mandibula ve KG kesitleri) arasındaki farklar Kruskal-Wallis testi ile değerlendirilirken sürekli değişken çiftleri arasındaki ilişki Spearman ve Kendall’ın sıra korelasyon katsayısı ile analiz edildi. İstatistiksel anlamlılık eşiği p<0.05 olarak belirlendi.
Bulgular: Seçilen kesitler (paranazal sinüs, maksilla, mandibula, KG) ve görüntüleme modları (Düşük Doz, Rutin, Yüksek Kalite) arasındaki farkların her ikisi de istatistiksel olarak anlamsız bulundu. Spearman’s ρ göre, KG fantomu ile maksiller ve mandibular kesitler arasındaki ilişki istatistiksel olarak anlamlı bulundu. Maksilla ve mandibula kesitleri için SNR değeri, antropometrik fantom kesitlerinde 12.6-23.1 arasında, KG fantomda ise 16.2-23.3 arasında hesaplandı. CNR değeri ise, ilgili antropometrik fantom kesitlerinde 13.2-88.5 arasında, KG fantom için ise 15.5-20.6 arasında bulundu.
Sonuç: Bu çalışmanın sonuçları, KIBT’de görüntü kalitesi testi için antropometrik fantom kesitleri ile yapılan ölçümlerin KG fantomu ile yapılanlara maksilla ve mandibula bölgelerinde benzer olduğunu destekler. İleride farklı fantom tipleri, görüntüleme sistemleri ve radyografik parametrelerle yapılacak çalışmalarla, görüntü kalitesi testlerinde iki fantom tipinin avantaj ve dezavantajları hakkında bilgi üretimi düşünülebilir.

References

  • de las Heras Gala H, Torresin A, Dasu A, Rampado O, Delis H, Hernández Girón I, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med 2017;39:67-72.
  • SEDENTEXCT. European Commission, Radiation Protection N 172: Cone beam CT for dental and maxillofacial radiology. Evidence based guidelines. A report prepared by the SEDENTECT Project. 2012.
  • Mihailidis DN, Stratis A, Gingold E, Carlson R, DeForest W, Gray J, et al. AAPM Task Group Report 261: Comprehensive quality control methodology and management of dental and maxillofacial cone beam computed tomography (CBCT) systems. Med Phys 2024;51:3134-64.
  • Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, et al. Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 2011;12:245-60.
  • Torgersen GR, Hol C, Møystad A, Hellén-Halme K, Nilsson M. A phantom for simplified image quality control of dental cone beam computed tomography units. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;118:603-11.
  • de Oliveira MV, Wenzel A, Campos PS, Spin-Neto R. Quality assurance phantoms for cone beam computed tomography: a systematic literature review. Dentomaxillofac Radiol 2017; 46:20160329.
  • Akyea-Larbi KO, Hasford F, Inkoom S, Tetteh MA, Gyekye PK. Evaluation of organ and effective doses using anthropomorphic phantom: A comparison between experimental measurement and a commercial dose calculator. Radiogr 2024;30:1-5.
  • Roa D, Leon S, Paucar O, Gonzales A, Schwarz B, Olguin E, et al. Monte Carlo simulations and phantom validation of low-dose radiotherapy to the lungs using an interventional radiology C-arm fluoroscope. Phys Med 2022;94:24-34.
  • Kesmezacar FF, Tunçman D, Nayci AE, Günay O, Yeyin N, Üzüm G, et al. In-depth exploration of the radiation exposure to staff performing endoscopic retrograde cholangiopancreatography procedures (ERCP) through RANDO phantom and TLDs. Jpn J Radiol 2024;42:1058-66.
  • Abuş F, Gürçalar A, Günay O, Tunçman D, Kesmezacar FF, Demir M. Quantification of Lens Radiation Exposure in Scopy Imaging: A Dose Level Analysis. IJASRaR 2024;1(1).
  • Hu Y, Xu S, Li B, Inscoe CR, Tyndall DA, Lee YZ, vd. Improving the accuracy of bone mineral density using a multisource CBCT. Sci Rep 2024;14:3887.
  • Nardi C, Talamonti C, Pallotta S, Saletti P, Calistri L, Cordopatri C, et al. Head and neck effective dose and quantitative assessment of image quality: a study to compare cone beam CT and multislice spiral CT. Dentomaxillofac Radiol 2017;46: 20170030.
  • Kadesjö N, Benchimol D, Falahat B, Näsström K, Shi X-Q. Evaluation of the effective dose of cone beam CT and multislice CT for temporomandibular joint examinations at optimized exposure levels. Dentomaxillofac Radiol 2015;44:20150041.
  • Elkhateeb SM, Torgersen GR, Arnout EA. Image quality assessment of clinically-applied CBCT protocols using a QAT phantom. Dentomaxillofac Radiol 2016;45: 20160075.
  • Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol 2014;37:309-19.
  • Pauwels R, Seynaeve L, Henriques JCG, de Oliveira-Santos C, Souza PC, Westphalen FH, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol 2015;44: 20150108.
  • Yel I, Booz C, Albrecht MH, Gruber-Rouh T, Polkowski C, Jacobi M, et al. Optimization of image quality and radiation dose using different cone-beam CT exposure parameters. Eur J Radiol 2019;116:68-75.
  • Kwong JC, Palomo JM, Landers MA, Figueroa A, Hans MG. Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 2008;133:317-27.
  • Ihlis RL, Kadesjö N, Tsilingaridis G, Benchimol D, Shi XQ. Image quality assessment of low-dose protocols in cone beam computed tomography of the anterior maxilla. Oral Surg Oral Med Oral Pathol Oral Radiol 2022;133:483-91.
  • Abouei E, Lee S, Ford NL. Quantitative performance characterization of image quality and radiation dose for a CS 9300 dental cone beam computed tomography machine. JMI 2015;2:044002-044002.
  • Hwang JJ, Park H, Jeong H-G, Han S-S. Change in Image Quality According to the 3D Locations of a CBCT Phantom. PLOS ONE 2016;11:e0153884.

Comparing Anthropometric and Quality Assurance Phantoms in Quantitative Image Quality Testing for CBCT Imaging

Year 2025, Volume: 14 Issue: 2, 101 - 108, 26.05.2025
https://doi.org/10.54617/adoklinikbilimler.1546507

Abstract

Aim: This study aims to imaging an anthropometric phantom and a quality assurance (QA) phantom with cone-beam computed tomography (CBCT) in three different dose protocols and to compare the quantitative image quality test values calculated with the anthropometric phantom with the QA phantom results in selected slices. Thus, it is aimed to produce information regarding the validity of image quality tests performed with anthropometric phantom slices.
Materials and Method: Alderson-Rando® phantom (Radiology Support Devices, Long Beach, CA) and QA phantom (QR Verona, Italy) were imaged with a MyRay Hyperion X9 Pro (Cefla, Imola, Italy) KIBT device. The field of view was chosen as 13x10 cm and three different imaging modes (Low Dose, Normal, High Quality) were implemented while keeping other parameters constant. Three slices were selected from the anthropometric phantom volumes (paranasal sinus, maxilla, mandible) and one slice from the QA phantom. A total of 12 image samples were imported into ImageJ software for signal-to-noise ratio and contrast-to-noise ratio calculations. Differences between three or more variables (Low Dose, Normal, High
Quality, or paranasal sinus, maxilla, mandible and QA phantom slices) were evaluated by Kruskal-Wallis test, while the relationship between pairs of variables was analyzed by Spearman and Kendall’s rank correlation coefficient. The statistical significance threshold was set as p<0.05.
Results: The differences between the selected slices (paranasal sinus, maxilla, mandible, QA) and imaging modes (Low Dose, Routine, High Quality) were both statistically insignificant. According to Spearman’s ρ, the correlation between QA phantom and maxillary and mandibular slices was statistically significant. SNR values for maxillary and mandibular slices were calculated between 12.6 and 23.1 for anthropometric phantom slices and between 16.2 and 23.3 for QA phantom slices. The CNR values were
between 13.2 and 88.5 for the respective anthropometric phantom slices and 15.5 and 20.6 for the QA phantom.
Conclusion: The results of this study support that the measurements made with anthropometric phantom slices for image quality testing in CBCT are similar to those made with the QA phantom in the maxilla and mandible regions. Future studies with different phantom types, imaging systems and radiographic parameters may be considered to produce information about the advantages and disadvantages of the two phantom types in image quality testing.

References

  • de las Heras Gala H, Torresin A, Dasu A, Rampado O, Delis H, Hernández Girón I, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med 2017;39:67-72.
  • SEDENTEXCT. European Commission, Radiation Protection N 172: Cone beam CT for dental and maxillofacial radiology. Evidence based guidelines. A report prepared by the SEDENTECT Project. 2012.
  • Mihailidis DN, Stratis A, Gingold E, Carlson R, DeForest W, Gray J, et al. AAPM Task Group Report 261: Comprehensive quality control methodology and management of dental and maxillofacial cone beam computed tomography (CBCT) systems. Med Phys 2024;51:3134-64.
  • Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, et al. Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 2011;12:245-60.
  • Torgersen GR, Hol C, Møystad A, Hellén-Halme K, Nilsson M. A phantom for simplified image quality control of dental cone beam computed tomography units. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;118:603-11.
  • de Oliveira MV, Wenzel A, Campos PS, Spin-Neto R. Quality assurance phantoms for cone beam computed tomography: a systematic literature review. Dentomaxillofac Radiol 2017; 46:20160329.
  • Akyea-Larbi KO, Hasford F, Inkoom S, Tetteh MA, Gyekye PK. Evaluation of organ and effective doses using anthropomorphic phantom: A comparison between experimental measurement and a commercial dose calculator. Radiogr 2024;30:1-5.
  • Roa D, Leon S, Paucar O, Gonzales A, Schwarz B, Olguin E, et al. Monte Carlo simulations and phantom validation of low-dose radiotherapy to the lungs using an interventional radiology C-arm fluoroscope. Phys Med 2022;94:24-34.
  • Kesmezacar FF, Tunçman D, Nayci AE, Günay O, Yeyin N, Üzüm G, et al. In-depth exploration of the radiation exposure to staff performing endoscopic retrograde cholangiopancreatography procedures (ERCP) through RANDO phantom and TLDs. Jpn J Radiol 2024;42:1058-66.
  • Abuş F, Gürçalar A, Günay O, Tunçman D, Kesmezacar FF, Demir M. Quantification of Lens Radiation Exposure in Scopy Imaging: A Dose Level Analysis. IJASRaR 2024;1(1).
  • Hu Y, Xu S, Li B, Inscoe CR, Tyndall DA, Lee YZ, vd. Improving the accuracy of bone mineral density using a multisource CBCT. Sci Rep 2024;14:3887.
  • Nardi C, Talamonti C, Pallotta S, Saletti P, Calistri L, Cordopatri C, et al. Head and neck effective dose and quantitative assessment of image quality: a study to compare cone beam CT and multislice spiral CT. Dentomaxillofac Radiol 2017;46: 20170030.
  • Kadesjö N, Benchimol D, Falahat B, Näsström K, Shi X-Q. Evaluation of the effective dose of cone beam CT and multislice CT for temporomandibular joint examinations at optimized exposure levels. Dentomaxillofac Radiol 2015;44:20150041.
  • Elkhateeb SM, Torgersen GR, Arnout EA. Image quality assessment of clinically-applied CBCT protocols using a QAT phantom. Dentomaxillofac Radiol 2016;45: 20160075.
  • Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol 2014;37:309-19.
  • Pauwels R, Seynaeve L, Henriques JCG, de Oliveira-Santos C, Souza PC, Westphalen FH, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol 2015;44: 20150108.
  • Yel I, Booz C, Albrecht MH, Gruber-Rouh T, Polkowski C, Jacobi M, et al. Optimization of image quality and radiation dose using different cone-beam CT exposure parameters. Eur J Radiol 2019;116:68-75.
  • Kwong JC, Palomo JM, Landers MA, Figueroa A, Hans MG. Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 2008;133:317-27.
  • Ihlis RL, Kadesjö N, Tsilingaridis G, Benchimol D, Shi XQ. Image quality assessment of low-dose protocols in cone beam computed tomography of the anterior maxilla. Oral Surg Oral Med Oral Pathol Oral Radiol 2022;133:483-91.
  • Abouei E, Lee S, Ford NL. Quantitative performance characterization of image quality and radiation dose for a CS 9300 dental cone beam computed tomography machine. JMI 2015;2:044002-044002.
  • Hwang JJ, Park H, Jeong H-G, Han S-S. Change in Image Quality According to the 3D Locations of a CBCT Phantom. PLOS ONE 2016;11:e0153884.
There are 21 citations in total.

Details

Primary Language English
Subjects Oral and Maxillofacial Radiology
Journal Section Araştırma Makalesi
Authors

Hakan Amasya 0000-0001-7400-9938

Şelale Özel 0000-0002-7399-1074

Duygu Tunçman 0000-0002-0929-0441

Songül Çavdar Karaçam 0000-0002-0904-489X

Kaan Orhan 0000-0001-6768-0176

Mustafa Demir 0000-0002-9813-1628

Publication Date May 26, 2025
Submission Date September 11, 2024
Acceptance Date March 8, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

Vancouver Amasya H, Özel Ş, Tunçman D, Çavdar Karaçam S, Orhan K, Demir M. Comparing Anthropometric and Quality Assurance Phantoms in Quantitative Image Quality Testing for CBCT Imaging. ADO Klinik Bilimler Dergisi. 2025;14(2):101-8.