Research Article
BibTex RIS Cite

Performance of Various Naive Bayes Algorithms on Employee Attrition Detection

Year 2025, Volume: 2 Issue: 1, 1 - 6, 01.07.2025

Abstract

Since companies aim to increase profits, the company's resources must be used correctly. Two of the resources that human resources should consider important for the company are time and the continuation of talented employees in the workplace. In the case of loss of talented employees, training given to new workers requires wages and time. This situation shows that loss of employees is an important problem in company policy.
This study aims to automatically detect employee attrition with machine learning algorithms. Naive Bayes classifiers are one of the successful machine learning algorithms used in many different fields such as text processing. Therefore, in this study, supervised classification has performed on the dataset with 5 different Naive Bayes algorithms in determining the employment loss. Gaussian Naive Bayes and Categorical Naive Bayes show the most successful results in determining the loss of workers.

References

  • Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw. Secur, 19(3), 62.
  • Alduayj, S. S., & Rajpoot, K. (2018, November). Predicting employee attrition using machine learning. In 2018 IEEE International Conference on Innovations in Information Technology (IIT) (pp. 93-98).
  • Alsubaie, F., & Aldoukhi, M. (2024). Using machine learning algorithms with improved accuracy to analyze and predict employee attrition. Decision Science Letters, 13(1), 1-18. doi: 10.5267/j.dsl.2023.12.006
  • Anonim. (2012). US Department of agriculture nutrient database for standard reference, Release 14. URL: http://www.nal.usda.gov/fnic/foodcomp (accessed date: March 23, 2012).
  • Atalar, M.N. and Türkan, F. (2018). Identification of chemical components from the Rhizomes of Acorus calamus L. with gas chromatography-tandem mass spectrometry (GC-MS\MS). Journal of the Institute of Science and Technology, 8(4), 181-187. doi: 10.21597/jist.433743
  • Dimitoglou, G., Adams, J. A., & Jim, C. M. (2012). Comparison of the C4. 5 and a Naïve Bayes classifier for the prediction of lung cancer survivability. arXiv preprint arXiv:1206.1121.
  • Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86. doi: 10.3390/computers9040086
  • Krishna, S., & Sidharth, S. (2024). HR Analytics: Analysis of Employee Attrition Using Perspectives from Machine Learning. In Flexibility, Resilience and Sustainability (pp. 267-286). Singapore: Springer Nature Singapore.
  • Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
  • Manning, C. D. (2008). Introduction to information retrieval.
  • Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006, July). Spam filtering with naive bayes-which naive bayes? In CEAS (Vol. 17, pp. 28-69).
  • Omura, K., Kudo, M., Endo, T., & Murai, T. (2012, November). Weighted naïve Bayes classifier on categorical features. In 2012 IEEE 12th International Conference on Intelligent Systems Design and Applications (ISDA) (pp. 865-870).
  • Pajila, P. B., Sheena, B. G., Gayathri, A., Aswini, J., & Nalini, M. (2023, September). A comprehensive survey on naive bayes algorithm: Advantages, limitations and applications. In 2023 IEEE 4th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1228-1234).
  • Patil, T. R., & Sherekar, S. S. (2013). Performance analysis of Naive Bayes and J48 classification algorithm for data classification. International Journal of Computer Science and Applications, 6(2), 256-261.
  • Sabiq, F. F., Rahmatulloh, A., Darmawan, I., Rizal, R., Gunawan, R., & Haerani, E. (2024, August). Performance Comparison of Multinomial and Bernoulli Naïve Bayes Algorithms with Laplace Smoothing Optimization in Fake News Classification. In 2024 IEEE International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD) (pp. 19-24).
  • Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P., Miche, Y., Lendasse, A., & Karhunen, J. (2015, August). Efficient detection of zero-day android malware using normalized Bernoulli naive bayes. In 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, Vol. 1, pp. 198-205. doi: 10.1109/Trustcom.2015.375
  • Subhashini, M., & Gopinath, R. (2020). Employee attrition prediction in industry using machine learning techniques. International Journal of Advanced Research in Engineering and Technology, 11(12), 3329-3341. doi: 10.17605/OSF.IO/9XDWE
  • URL:https://www.kaggle.com/datasets/comrade1234/employee-attrition-using-machine-learning/data (accessed date: September 2, 2022).
  • Vardarlier, P.; Zafer, C. Use of Artificial Intelligence as Business Strategy in Recruitment Process and Social Perspective. In Digital Business Strategies in Blockchain Ecosystems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 355–373. doi: 10.1007/978-3-030-29739-8_17
  • Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714. doi: 10.1007/978-0-387-30164-8
  • Wickramasinghe, I., Kalutarage, H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput 25, 2277–2293 (2021). doi: 10.1007/s00500-020-05297-6

Çeşitli Naive Bayes Algoritmalarının Çalışan Kaybı Tespiti Üzerindeki Performansı

Year 2025, Volume: 2 Issue: 1, 1 - 6, 01.07.2025

Abstract

Şirketler karı artırmayı amaçladığından, şirketin kaynaklarının doğru kullanılması gerekir. İnsan kaynaklarının şirket için önemli düşünmesi gereken kaynaklarından ikisi, zaman ve yetenekli işçileri iş yerinde devam ettirilmesidir. Yetenekli işçi kaybında, yeni işçiye verilen eğitimler ücret ve zaman gerektirmektedir. Bu durum işçi kaybının şirket politikasında önemli bir sorun olduğunu göstermektedir.
Bu çalışmada işçi istihdam kaybını makine öğrenme algoritmaları ile otomatik olarak tespit etmek amaçlanmaktadır. Naif Bayes sınıflandırıcıları, metin işleme gibi birçok farklı alanda kullanılan başarılı makine öğrenimi algoritmalarından biridir. Bu nedenle, bu çalışmada, istihdam kaybını belirlemede veri kümesinde 5 farklı Naif Bayes algoritması ile gözetimli sınıflandırma gerçekleştirilmiştir. İşçi kayıplarının belirlenmesinde Gauss Saf Bayes ve Kategorik Saf Bayes en başarılı sonuçları göstermektedir.

References

  • Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw. Secur, 19(3), 62.
  • Alduayj, S. S., & Rajpoot, K. (2018, November). Predicting employee attrition using machine learning. In 2018 IEEE International Conference on Innovations in Information Technology (IIT) (pp. 93-98).
  • Alsubaie, F., & Aldoukhi, M. (2024). Using machine learning algorithms with improved accuracy to analyze and predict employee attrition. Decision Science Letters, 13(1), 1-18. doi: 10.5267/j.dsl.2023.12.006
  • Anonim. (2012). US Department of agriculture nutrient database for standard reference, Release 14. URL: http://www.nal.usda.gov/fnic/foodcomp (accessed date: March 23, 2012).
  • Atalar, M.N. and Türkan, F. (2018). Identification of chemical components from the Rhizomes of Acorus calamus L. with gas chromatography-tandem mass spectrometry (GC-MS\MS). Journal of the Institute of Science and Technology, 8(4), 181-187. doi: 10.21597/jist.433743
  • Dimitoglou, G., Adams, J. A., & Jim, C. M. (2012). Comparison of the C4. 5 and a Naïve Bayes classifier for the prediction of lung cancer survivability. arXiv preprint arXiv:1206.1121.
  • Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86. doi: 10.3390/computers9040086
  • Krishna, S., & Sidharth, S. (2024). HR Analytics: Analysis of Employee Attrition Using Perspectives from Machine Learning. In Flexibility, Resilience and Sustainability (pp. 267-286). Singapore: Springer Nature Singapore.
  • Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
  • Manning, C. D. (2008). Introduction to information retrieval.
  • Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006, July). Spam filtering with naive bayes-which naive bayes? In CEAS (Vol. 17, pp. 28-69).
  • Omura, K., Kudo, M., Endo, T., & Murai, T. (2012, November). Weighted naïve Bayes classifier on categorical features. In 2012 IEEE 12th International Conference on Intelligent Systems Design and Applications (ISDA) (pp. 865-870).
  • Pajila, P. B., Sheena, B. G., Gayathri, A., Aswini, J., & Nalini, M. (2023, September). A comprehensive survey on naive bayes algorithm: Advantages, limitations and applications. In 2023 IEEE 4th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1228-1234).
  • Patil, T. R., & Sherekar, S. S. (2013). Performance analysis of Naive Bayes and J48 classification algorithm for data classification. International Journal of Computer Science and Applications, 6(2), 256-261.
  • Sabiq, F. F., Rahmatulloh, A., Darmawan, I., Rizal, R., Gunawan, R., & Haerani, E. (2024, August). Performance Comparison of Multinomial and Bernoulli Naïve Bayes Algorithms with Laplace Smoothing Optimization in Fake News Classification. In 2024 IEEE International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD) (pp. 19-24).
  • Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P., Miche, Y., Lendasse, A., & Karhunen, J. (2015, August). Efficient detection of zero-day android malware using normalized Bernoulli naive bayes. In 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, Vol. 1, pp. 198-205. doi: 10.1109/Trustcom.2015.375
  • Subhashini, M., & Gopinath, R. (2020). Employee attrition prediction in industry using machine learning techniques. International Journal of Advanced Research in Engineering and Technology, 11(12), 3329-3341. doi: 10.17605/OSF.IO/9XDWE
  • URL:https://www.kaggle.com/datasets/comrade1234/employee-attrition-using-machine-learning/data (accessed date: September 2, 2022).
  • Vardarlier, P.; Zafer, C. Use of Artificial Intelligence as Business Strategy in Recruitment Process and Social Perspective. In Digital Business Strategies in Blockchain Ecosystems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 355–373. doi: 10.1007/978-3-030-29739-8_17
  • Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714. doi: 10.1007/978-0-387-30164-8
  • Wickramasinghe, I., Kalutarage, H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput 25, 2277–2293 (2021). doi: 10.1007/s00500-020-05297-6
There are 21 citations in total.

Details

Primary Language English
Subjects Supervised Learning, Machine Learning Algorithms, Classification Algorithms
Journal Section Research Articles
Authors

Fahriye Gemci 0000-0003-0961-5266

Publication Date July 1, 2025
Submission Date December 9, 2024
Acceptance Date January 11, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Gemci, F. (2025). Performance of Various Naive Bayes Algorithms on Employee Attrition Detection. ADÜ Fen Ve Mühendislik Bilimleri Dergisi, 2(1), 1-6.