BibTex RIS Cite

The Biology of Aging

Year 2016, Volume: 5 Issue: 2, 467 - 471, 01.06.2016

Abstract

Backround/Aim: The World Health Organization defines ageing as ‘a reduction in the ability to adopt to environmental factors’. Just like childhood and adulthood, ageing is a life stage which has its own psychological, physiological and biological characteristics. The lifespan not only vary greatly across organism but among tissue types, even across different cell types within a tissue. Many theories have been proposed to explain the mechanism of ageing but neither of them appears to be fully satisfactory. The aim of this review is to give information about most commonly accepted theories of aging. Conclusion: Modern biological theories of aging fall into two main categories: programmed and stochastic or damage theories. The damage theories emphasize the cumulative effects of random events internal or external that induce damage at various levels as the cause of aging. The programmed theories imply that aging follows a biological timetable, perhaps a continuation of the one that regulates childhood growth and development. The main cause of a permanent cell cycle arrest after a certain number of cellular division, also known as replicative senescence, is telomere shortening. As mentioned above environmental assaults damage cells and tissues resulting in ageing. As a result, although many theory are proposed by theorists to explain the process of ageing, they are mutually exclusive, no one theory is sufficiently able to explain the process of ageing.

References

  • Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ (2010). RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 17(21):2232-52.
  • Arı N (2008). Yaşlanmada Crosslinkage Teorisi: İlerlemiş Glikasyon Son Ürünlerinin (AGEs) rolü. Turkiye Klinikleri J Med Sci. 28(6):12-5.
  • Chance B, Sies H, Boveris A (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59(3):527-605.
  • Chen JH, Hales CN, Ozanne SE (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 35(22):7417-28.
  • Creagh-Brown BC, Quinlan GJ, Evans TW, Burke-Gaffney A (2010). The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target? Intensive Care Med 36:1644-56
  • Danial NN, Korsmeyer SJ (2004). Cell death: critical control points. Cell. 116(2):205-19.
  • de Magalhães JP, Faragher RG (2008). Cell divisions and mammalian aging: integrative biology insights from genes that regulate longevity. Bioessays. 30(6):567-78.
  • Finkel T (2003). Oxidant signals and oxidative stress. Curr Opin Cell Biol. 15(2):247-54.
  • Förster A, Kühne Y, Henle T (2005). Studies on absorption and elimination of dietary maillard reaction products. Ann N Y Acad Sci. 1043:474-81.
  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990). Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 87(12):4533-7.
  • Gemayel R, Fortpied J, Rzem R, Vertommen D, Veiga-da-Cunha M, Van Schaftingen E (2007). Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. FEBS J 274:4360-74.
  • Green DR, Kroemer G (2004). The pathophysiology of mitochondrial cell death. Science. 305(5684):626-9.
  • Harman D (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 1067:10-21.
  • Hajimiri M, Shahverdi S, Kamalinia G, Dinarvand R (2015). Growth factor conjugation: strategies and applications. J Biomed Mater Res A. 103(2):819-38.
  • Hayflick L (2007). Biological aging is no longer an unsolved problem. Ann N Y Acad Sci. 1100:1-13.
  • Heidenreich B, Rachakonda PS, Hemminki K, Kumar R (2014). TERT promoter mutations in cancer development. Curr Opin Genet Dev. 24:30-7.
  • Hemann MT, Strong MA, Hao LY, Greider CW (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 107(1):67-77.
  • Hipkiss AR (2006). Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41:464-73.
  • Jazwinski SM (1996). Longevity, genes, and aging. Science. 273(5271):54-9.
  • Jiang H, Ju Z, Rudolph KL (2007). Telomere shortening and ageing. Z Gerontol Geriatr. 40(5):314-24.
  • Kılınç K (2011). Protein glikasyonu. Hacettepe Tıp Dergisi. 42:95-104.
  • Kregel KC, Zhang HJ (2007). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 292(1): R18-36.
  • Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG (2017). p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res. 187(4):424-432.
  • Linnane AW, Zhang C, Baumer A, Nagley P (1992). Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res. 275(3-6):195-208.
  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005). DNA repair, genome stability, and aging. Cell. 120(4):497- 512.
  • Lüleyap HÜ (2008). Hücre Döngüsü ve Kontrolü (Bölüm 14), Moleküler Genetiğin Esasları, s 262-289, Ankara
  • Misciagna G, De Michele G, Trevisan M (2007) Non-enzymatic glycated proteins in the blood and cardiovascular disease. Curr Pharm Dest 13:3688-95.
  • Newbold RF (2002). The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis. 17(6):539- 50.
  • Raja, Sivamani K, Garcia MS, Isseroff RR (2007). Wound re- epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 1(12):2849-68.
  • Rattan SI (2006). Theories of biological aging: genes, proteins, and free radicals. Free Radic Res. 40(12):1230-8.
  • Roos WP, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med. 12(9):440-50.
  • Sengupta S, Henry RW (2015). Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system. Biochim Biophys Acta. 1849(10):1289-97.
  • Troen BR (2003). The biology of aging. Mt Sinai J Med. 70(1):3-22.
  • Toyokuni S (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int. 49(2):91-102.
  • Udayan Dutta U, Cohenford MA, Guha M, Dain JA (2006). In vitro nonenzymatic glycation of DNA nucleobases: an evaluation of advanced glycation end products under alkaline pH. Anal Bioanal Chem. 386:1633-40.
  • Van Schaftingen E, Collard F, Wiame E, Veiga-da-Cunha M (2012). Enzymatic repair of Amadori products. Amino Acids 42(4):1143-50.
  • Wiame E, Lamosa P, Santos H, Van Schaftingen E (2005). Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochem J. 392:263-9.
  • Zhang Q, Ames JM, Smith RD, John W, Baynes JW, Metz TO (2009). A Perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J Proteome Res. 8:754- 69.

Yaşlanmanın Biyolojisi

Year 2016, Volume: 5 Issue: 2, 467 - 471, 01.06.2016

Abstract

Özbilgi/Amaç: Dünya Sağlık Örgütü yaşlılığı çevresel faktörlere uyum sağlayabilme yeteneğinin azalması olarak tanımlamaktadır. Yaşlılık bir hastalık olmayıp, tıpkı çocukluk ve erişkinlik dönemleri gibi kendine özgü psikolojik, fizyolojik ve biyolojik değişiklikleri içeren yaşamın bir dönemidir. Yaşlanma sürecini açıklamaya yönelik çok sayıda yaşlanma teorileri ileri sürülmüştür. İleri sürülen bu teorilerde, yaşlanma süreci genellikle tek bir mekanizma ile açıklanmaya çalışılmıştır. Buna karşın yaşlanmanın tek bir mekanizma ile açıklanamayacak kadar karışık olduğunu ileri süren çalışmalar da bulunmaktadır. Bu derlemenin amacı yaşlanmanın biyolojisi hakkında bilgi vermektir. Sonuç: Yaşlanma teorileri genel olarak stokastik rastlantısal ve kalıtsal olmak üzere ikiye ayrılır. Stokastik teoriye göre yaşlılık, biyomoleküllerde rastlantısal olarak oluşan hataların birikmesine sonucu meydana gelir. Dış ve iç faktörlere bağlı olarak hücrenin genetik materyalinde meydana gelen mutasyonların zamanla birikmesi ve biyomolekülerin glikasyonu sonucu oluşan ileri glikasyon ürünlerinin yaşlanmaya neden olduğu ileri sürülmektedir. Kalıtsal modele göre ise yaşlanmanın programlanmış bir süreç olduğu kabul edilmektedir. Çoğalabilen hücrelerin belli sayıda bölündükten sonra bölünme yeteneklerini kaybetmesi olarak tanımlanan replikatif yaşlılığın temel nedeni telomer kısalmasıdır. Telomer uzunluğu kritik limit adı verilen alt limite kadar kısalan hücrelerde, hücre döngüsü geri dönüşümsüz olarak durdurulur. Telomer uçlarının kısalması sonucu çoğalma yeteneğini kaybeden hücrelerde yukarıda sözü edilen dış ve iç faktörlerin etkisiyle meydana gelen değişikliklerin birikmesi nedeniyle hücreler zamanla fonksiyonlarını yerine getiremez duruma gelirler, diğer bir deyişle yaşlanırlar. Sonuç olarak, yaşlanma sürecini tek bir mekanizma ile açıklamaya çalışan çok sayıda teori ileri sürülmesine rağmen yaşlanmanın tek bir mekanizma ile açıklanamayacak kadar karmaşık olduğu, birçok mekanizmanın yaşlanma sürecinde etkili olduğu görülmektedir.

References

  • Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ (2010). RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 17(21):2232-52.
  • Arı N (2008). Yaşlanmada Crosslinkage Teorisi: İlerlemiş Glikasyon Son Ürünlerinin (AGEs) rolü. Turkiye Klinikleri J Med Sci. 28(6):12-5.
  • Chance B, Sies H, Boveris A (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59(3):527-605.
  • Chen JH, Hales CN, Ozanne SE (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 35(22):7417-28.
  • Creagh-Brown BC, Quinlan GJ, Evans TW, Burke-Gaffney A (2010). The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target? Intensive Care Med 36:1644-56
  • Danial NN, Korsmeyer SJ (2004). Cell death: critical control points. Cell. 116(2):205-19.
  • de Magalhães JP, Faragher RG (2008). Cell divisions and mammalian aging: integrative biology insights from genes that regulate longevity. Bioessays. 30(6):567-78.
  • Finkel T (2003). Oxidant signals and oxidative stress. Curr Opin Cell Biol. 15(2):247-54.
  • Förster A, Kühne Y, Henle T (2005). Studies on absorption and elimination of dietary maillard reaction products. Ann N Y Acad Sci. 1043:474-81.
  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990). Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 87(12):4533-7.
  • Gemayel R, Fortpied J, Rzem R, Vertommen D, Veiga-da-Cunha M, Van Schaftingen E (2007). Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. FEBS J 274:4360-74.
  • Green DR, Kroemer G (2004). The pathophysiology of mitochondrial cell death. Science. 305(5684):626-9.
  • Harman D (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 1067:10-21.
  • Hajimiri M, Shahverdi S, Kamalinia G, Dinarvand R (2015). Growth factor conjugation: strategies and applications. J Biomed Mater Res A. 103(2):819-38.
  • Hayflick L (2007). Biological aging is no longer an unsolved problem. Ann N Y Acad Sci. 1100:1-13.
  • Heidenreich B, Rachakonda PS, Hemminki K, Kumar R (2014). TERT promoter mutations in cancer development. Curr Opin Genet Dev. 24:30-7.
  • Hemann MT, Strong MA, Hao LY, Greider CW (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 107(1):67-77.
  • Hipkiss AR (2006). Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41:464-73.
  • Jazwinski SM (1996). Longevity, genes, and aging. Science. 273(5271):54-9.
  • Jiang H, Ju Z, Rudolph KL (2007). Telomere shortening and ageing. Z Gerontol Geriatr. 40(5):314-24.
  • Kılınç K (2011). Protein glikasyonu. Hacettepe Tıp Dergisi. 42:95-104.
  • Kregel KC, Zhang HJ (2007). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 292(1): R18-36.
  • Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG (2017). p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res. 187(4):424-432.
  • Linnane AW, Zhang C, Baumer A, Nagley P (1992). Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res. 275(3-6):195-208.
  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005). DNA repair, genome stability, and aging. Cell. 120(4):497- 512.
  • Lüleyap HÜ (2008). Hücre Döngüsü ve Kontrolü (Bölüm 14), Moleküler Genetiğin Esasları, s 262-289, Ankara
  • Misciagna G, De Michele G, Trevisan M (2007) Non-enzymatic glycated proteins in the blood and cardiovascular disease. Curr Pharm Dest 13:3688-95.
  • Newbold RF (2002). The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis. 17(6):539- 50.
  • Raja, Sivamani K, Garcia MS, Isseroff RR (2007). Wound re- epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 1(12):2849-68.
  • Rattan SI (2006). Theories of biological aging: genes, proteins, and free radicals. Free Radic Res. 40(12):1230-8.
  • Roos WP, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med. 12(9):440-50.
  • Sengupta S, Henry RW (2015). Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system. Biochim Biophys Acta. 1849(10):1289-97.
  • Troen BR (2003). The biology of aging. Mt Sinai J Med. 70(1):3-22.
  • Toyokuni S (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int. 49(2):91-102.
  • Udayan Dutta U, Cohenford MA, Guha M, Dain JA (2006). In vitro nonenzymatic glycation of DNA nucleobases: an evaluation of advanced glycation end products under alkaline pH. Anal Bioanal Chem. 386:1633-40.
  • Van Schaftingen E, Collard F, Wiame E, Veiga-da-Cunha M (2012). Enzymatic repair of Amadori products. Amino Acids 42(4):1143-50.
  • Wiame E, Lamosa P, Santos H, Van Schaftingen E (2005). Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochem J. 392:263-9.
  • Zhang Q, Ames JM, Smith RD, John W, Baynes JW, Metz TO (2009). A Perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J Proteome Res. 8:754- 69.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Emrah İpek This is me

Recai Tunca This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 5 Issue: 2

Cite

APA İpek, E., & Tunca, R. (2016). Yaşlanmanın Biyolojisi. Animal Health Production and Hygiene, 5(2), 467-471.