Research Article
BibTex RIS Cite

Gerçek Veri Uygulamaları ile Log Exponential-Power Dağılımı için Parametre Tahmin Prosedürleri

Year 2022, , 193 - 202, 30.12.2022
https://doi.org/10.37094/adyujsci.1073616

Abstract

Bu makalede, log exponential-power dağılımının iki parametresini tahmin etmek için çeşitli tahmin yöntemleri araştırılmıştır. En çok olabilirlik, kuantil, en küçük kareler, ağırlıklandırılmış en küçük kareler, Anderson-Darling ve Cramer-von Mises tahmin yöntemleri detaylı olarak incelenmiştir. Bu tahmin edicilerin performanslarını değerlendirmek için Monte Carlo simülasyon deneyleri yapılmıştır. Ayrıca dört gerçek veri uygulaması gerçekleştirilmiş ve tüm tahmin ediciler Kolmogorov-Smirnov istatistiği sonuçları sunulmuştur.

References

  • Korkmaz, M.Ç., Altun, E., Alizadeh, M., El-Morshedy, M., The Log Exponential- Power Distribution: Properties, Estimations and Quantile Regression Model, Mathematics, 9 (21), 2634, 2021.
  • Smith, R.M., Bain, L.J., An exponential power life-testing distribution, Communication in Statistics Theory Methods, 4, 469–481, 1975.
  • Kumaraswamy, P., A generalized probability density function for double-bounded random processes, Journal of Hydrology, 46, 79–88, 1980.
  • Kao, J.H., Computer methods for estimating Weibull parameters in reliability studies, IRE Transactions on Reliability and Quality Control, 13, 15-22, 1958.
  • Dumonceaux, R., Antle, C.E., Discrimination between the log-normal and the Weibull distributions, Technometrics, 15 (4), 923-926, 1973.
  • Balakrishnan, N., Cohen, A.C., Order Statistics & Inference: Estimation Methods, Elsevier, Amsterdam, The Netherlands, 2014.
  • Alizadeh, M., Altun, E., Cordeiro, G.M., Rasekhi, M., The odd power Cauchy family of distributions: Properties, regression models and applications, Journal of Statistical Computation and Simulation, 88, 785–807, 2018.
  • Elgarhy, M., Exponentiated generalized Kumaraswamy distribution with applications, Annals of Data Science, 5 (2), 273-292, 2018.
  • Cordeiro, G.M., dos Santos Brito, R., The beta power distribution, Brazilian Journal Of Probability And Statistics, 26 (1), 88-112, 2012.
  • Opone, F., Iwerumor, B., A new Marshall-Olkin extended family of distributions with bounded support, Gazi University Journal of Science, 34 (3), 899-914, 2021.
  • Balogun, O.S., Iqbal, M.Z., Arshad, M.Z., Afify, A.Z., Oguntunde, P.E., A new generalization of Lehmann type-II distribution: Theory, simulation, and applications to survival and failure rate data, Scientific African, 12, e00790, 2021.
  • Saraçoğlu, B., Tanış, C., A new statistical distribution: cubic rank transmuted Kumaraswamy distribution and its properties, Journal of the National Science Foundation of Sri Lanka, 46 (4), 505-518, 2018.
  • Jamal, F., Chesneau, C., A new family of polyno-expo-trigonometric distributions with applications, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 22 (04), 1950027, 2019.

Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications

Year 2022, , 193 - 202, 30.12.2022
https://doi.org/10.37094/adyujsci.1073616

Abstract

In this study, some estimation techniques are investigated to estimate two parameters of the log exponential-power distribution. The maximum likelihood, quantile, least squares, weighted least squares, Anderson-Darling, and Cramer-von Mises estimation methods are studied in detail. The efficiency of these estimators is validated through Monte Carlo simulation experiments. Also, four real data applications are performed and Kolmogorov-Smirnov statistic results for all estimators are presented.

References

  • Korkmaz, M.Ç., Altun, E., Alizadeh, M., El-Morshedy, M., The Log Exponential- Power Distribution: Properties, Estimations and Quantile Regression Model, Mathematics, 9 (21), 2634, 2021.
  • Smith, R.M., Bain, L.J., An exponential power life-testing distribution, Communication in Statistics Theory Methods, 4, 469–481, 1975.
  • Kumaraswamy, P., A generalized probability density function for double-bounded random processes, Journal of Hydrology, 46, 79–88, 1980.
  • Kao, J.H., Computer methods for estimating Weibull parameters in reliability studies, IRE Transactions on Reliability and Quality Control, 13, 15-22, 1958.
  • Dumonceaux, R., Antle, C.E., Discrimination between the log-normal and the Weibull distributions, Technometrics, 15 (4), 923-926, 1973.
  • Balakrishnan, N., Cohen, A.C., Order Statistics & Inference: Estimation Methods, Elsevier, Amsterdam, The Netherlands, 2014.
  • Alizadeh, M., Altun, E., Cordeiro, G.M., Rasekhi, M., The odd power Cauchy family of distributions: Properties, regression models and applications, Journal of Statistical Computation and Simulation, 88, 785–807, 2018.
  • Elgarhy, M., Exponentiated generalized Kumaraswamy distribution with applications, Annals of Data Science, 5 (2), 273-292, 2018.
  • Cordeiro, G.M., dos Santos Brito, R., The beta power distribution, Brazilian Journal Of Probability And Statistics, 26 (1), 88-112, 2012.
  • Opone, F., Iwerumor, B., A new Marshall-Olkin extended family of distributions with bounded support, Gazi University Journal of Science, 34 (3), 899-914, 2021.
  • Balogun, O.S., Iqbal, M.Z., Arshad, M.Z., Afify, A.Z., Oguntunde, P.E., A new generalization of Lehmann type-II distribution: Theory, simulation, and applications to survival and failure rate data, Scientific African, 12, e00790, 2021.
  • Saraçoğlu, B., Tanış, C., A new statistical distribution: cubic rank transmuted Kumaraswamy distribution and its properties, Journal of the National Science Foundation of Sri Lanka, 46 (4), 505-518, 2018.
  • Jamal, F., Chesneau, C., A new family of polyno-expo-trigonometric distributions with applications, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 22 (04), 1950027, 2019.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mustafa Ç. Korkmaz 0000-0003-3302-0705

Kadir Karakaya 0000-0002-0781-3587

Yunus Akdoğan 0000-0003-3520-7493

Publication Date December 30, 2022
Submission Date February 14, 2022
Acceptance Date September 28, 2022
Published in Issue Year 2022

Cite

APA Korkmaz, M. Ç., Karakaya, K., & Akdoğan, Y. (2022). Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications. Adıyaman University Journal of Science, 12(2), 193-202. https://doi.org/10.37094/adyujsci.1073616
AMA Korkmaz MÇ, Karakaya K, Akdoğan Y. Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications. ADYU J SCI. December 2022;12(2):193-202. doi:10.37094/adyujsci.1073616
Chicago Korkmaz, Mustafa Ç., Kadir Karakaya, and Yunus Akdoğan. “Parameter Estimation Procedures for Log Exponential-Power Distribution With Real Data Applications”. Adıyaman University Journal of Science 12, no. 2 (December 2022): 193-202. https://doi.org/10.37094/adyujsci.1073616.
EndNote Korkmaz MÇ, Karakaya K, Akdoğan Y (December 1, 2022) Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications. Adıyaman University Journal of Science 12 2 193–202.
IEEE M. Ç. Korkmaz, K. Karakaya, and Y. Akdoğan, “Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications”, ADYU J SCI, vol. 12, no. 2, pp. 193–202, 2022, doi: 10.37094/adyujsci.1073616.
ISNAD Korkmaz, Mustafa Ç. et al. “Parameter Estimation Procedures for Log Exponential-Power Distribution With Real Data Applications”. Adıyaman University Journal of Science 12/2 (December 2022), 193-202. https://doi.org/10.37094/adyujsci.1073616.
JAMA Korkmaz MÇ, Karakaya K, Akdoğan Y. Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications. ADYU J SCI. 2022;12:193–202.
MLA Korkmaz, Mustafa Ç. et al. “Parameter Estimation Procedures for Log Exponential-Power Distribution With Real Data Applications”. Adıyaman University Journal of Science, vol. 12, no. 2, 2022, pp. 193-02, doi:10.37094/adyujsci.1073616.
Vancouver Korkmaz MÇ, Karakaya K, Akdoğan Y. Parameter Estimation Procedures for Log Exponential-Power Distribution with Real Data Applications. ADYU J SCI. 2022;12(2):193-202.

...