Bu makalede, log exponential-power dağılımının iki parametresini tahmin etmek için çeşitli tahmin yöntemleri araştırılmıştır. En çok olabilirlik, kuantil, en küçük kareler, ağırlıklandırılmış en küçük kareler, Anderson-Darling ve Cramer-von Mises tahmin yöntemleri detaylı olarak incelenmiştir. Bu tahmin edicilerin performanslarını değerlendirmek için Monte Carlo simülasyon deneyleri yapılmıştır. Ayrıca dört gerçek veri uygulaması gerçekleştirilmiş ve tüm tahmin ediciler Kolmogorov-Smirnov istatistiği sonuçları sunulmuştur.
Nokta tahmini Log exponential-power dağılımı En çok olabilirlik tahmini Gerçek veri uygulaması
In this study, some estimation techniques are investigated to estimate two parameters of the log exponential-power distribution. The maximum likelihood, quantile, least squares, weighted least squares, Anderson-Darling, and Cramer-von Mises estimation methods are studied in detail. The efficiency of these estimators is validated through Monte Carlo simulation experiments. Also, four real data applications are performed and Kolmogorov-Smirnov statistic results for all estimators are presented.
Point estimation Log exponential-power distribution Maximum likelihood estimators Practical data application Nokta tahmini Log exponential-power dağılımı En çok olabilirlik tahmini Gerçek veri uygulaması.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | December 30, 2022 |
Submission Date | February 14, 2022 |
Acceptance Date | September 28, 2022 |
Published in Issue | Year 2022 |
...