Research Article
BibTex RIS Cite

Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites

Year 2022, , 142 - 161, 30.06.2022
https://doi.org/10.37094/adyujsci.1113239

Abstract

In present study, the effects of copper substitution on the magnetic and magnetocaloric properties of La0.7Sr0.3Mn1-xCuxO3 manganite samples were investigated. La0.7Sr0.3Mn1-xCuxO3 samples were obtained by using sol-gel method. X-ray diffraction analyses were performed to determine structural properties such as lattice parameters and crystal structure. The crystal structure of the samples is rhombohedral with space group 𝑅3𝑐. The Cu substitution to the Mn- site causes a decrease in the magnetic phase transition temperature (TC) of the samples. By using Banerjee criterion and Landau theory, the type of magnetic phase transition is determined as second order. From isothermal magnetization measurements, magnetic entropy change (-∆𝑆() values were calculated for different magnetic field changes of the samples. The maximum magnetic entropy change value (-∆𝑆(*+,) determined from the temperature dependence of -∆𝑆( curves for the samples is 3.39 and 2.78 JKg-1K-1 under 5 T, respectively. Relative cooling power (RCP) values of the samples were found as 249.52 and 111.98 Jkg-1 for 5 T, respectively.

Supporting Institution

TüBİTAK

Project Number

119F069.

Thanks

This work is supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) under Grant Contract No. 119F069.

References

  • [1] Sari, O., Balli, M., From conventional to magnetic refrigerator technology, International Journal of Refrigeration, 37, 8-15, 2014.
  • [2] Brown, J.S., Domanski, P.A., Review of alternative cooling technologies, Applied Thermal Engineering, 64, 252-262, 2014.
  • [3] Calm, J. M., Emissions and environmental impacts from air-conditioning and refrigeration systems, International Journal of Refrigeration, 25, 293-305, 2002.
  • [4] Omer, A.M., Energy use and environmental impacts: A general review, Journal of Renewable and Sustainable Energy, 1, 053101, 2009.
  • [5] Khosla, R., Miranda, N.D., Trotter, P.A., Mazzone, A., Renaldi, R., McElroy, C., Cohen, F., Jani, A., Perera-Salazar, R., McCulloch, M., Cooling for sustainable development, Nature Sustainability, 4, 201-208, 2021.
  • [6] Crossley, S., Mathur, N., Moya, X., New developments in caloric materials for cooling applications, Aip Advances, 5, 067153, 2015.
  • [7] Akça, G., Kılıç Çetin, S., Ekicibil, A., Composite xLa0.7Ca0.2Sr0.1MnO3/(1− x) La0.7Te0.3MnO3 materials: magnetocaloric properties around room temperature, Journal of Materials Science: Materials in Electronics, 31, 6796–6808, 2020.
  • [8] Ayaş, A.O., Kılıç Çetin, S., Akyol, M., Akça, G., Ekicibil, A., Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x=0.0, 0.1 and 0.2) perovskite system, Journal of Molecular Structure, 1200, 127120, 2020.
  • [9] Dhahri, A., Dhahri, J., Dhahri, E., Effect of potassium doping on physical properties of perovskites La0.8Cd0.2−xKxMnO3, Journal of Alloys and Compounds, 489, 9-12, 2010.
  • [10] Elghoul, A., Krichene, A., Boujelben, W., Landau theory and critical behavior near the ferromagnetic-paramagnetic transition temperature in Pr0.63A0.07Sr0.3MnO3 (A=Pr, Sm and Bi) manganites, Journal of Physics and Chemistry of Solids, 108, 52-60, 2017.
  • [11] Pecharsky, V.K., Gschneidner Jr, K.A., Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials, 200, 44-56, 1999.
  • [12] Biswas, A., Chandra, S., Phan, M.H., Srikanth, H., Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power, Journal of Alloys and Compounds, 545, 157-161, 2012.
  • [13] Phan, M.H., Yu, S.C., Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308, 325-340, 2007.
  • [14] Tishin, A.M., Spichkin, Y.I., The Magnetocaloric Effect and its Applications, IOP Publishing LTD, London, 2003.
  • [15] Franco, V., Conde, A., Kuz’min, M. D., Romero-Enrique, J. M., The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?, Journal of Applied Physics 105, 07A917, 2009.
  • [16] Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Hlil E. K., Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state, RSC Advances, 6, 54299–54309, 2016.
  • [17] Lyubin, J., Magnetocaloric materials for energy efficient cooling, Journal of Physics D: Applied Physics, 50, 053002, 2017.
  • [18] Paticopoulos, S.C., Caballero-Flores, R., Franco, V., Bla ́zquez, J.S., Cond, A., Knipling, K.E., Willard, M.A., Enhancement of the magnetocaloric effect in composites: Experimental validation, Solid State Communications, 152 , 1590–1594, 2012.
  • [19] Monfared, B. Palm, B., Material requirements for magnetic refrigeration applications, International Journal of Refrigeration, 96, 25–37,2018.
  • [20] Coey, J.M.D., Viret, M., Von Molnár, S., Mixed-valence manganites, Advances in Physics, 48:2, Taylor & Francis, 167-293, 1999.
  • [21] Rostamnejadi A., Salamati, H., Kameli, P., Ahmadvand, H., Superparamagnetic behavior of La0.67Sr0.33MnO3 nanoparticles prepared via sol–gel method, Journal of Magnetism and Magnetic Materials, 321, 3126–3131, 2009.
  • [22] Zverev, V.I., Pyatakov, A.P., Shtil, A.A., Tishin, A.M., Novel applications of magnetic materials and technologies for medicine, Journal of Magnetism and Magnetic Materials, 459, 182–186, 2018.
  • [23] Thaljaou, R., Boujelben, W., Pekała, M., Pekała, K., Mucha, J., Cheikhrouhou, A., Structural, magnetic and transport study of monovalent Na-doped manganite Pr0.55Na0.05Sr0.4MnO3, Journal of Alloys and Compounds, 558, 236–243, 2013.
  • [24] Levy, P., Parisi, F., Polla, G., Vega, D., Leyva, G., Lanza, H., Controlled phase separation in La0.5Ca0.5MnO3, Physical Review B, 62, 6437-6441, 2000.
  • [25] Walha, I., Smari, M., M’nasri, T., Dhahri, E., Structural, magnetic, and magnetocaloric properties of Ag-doped in the La0.6Ca0.4MnO3 compound, Journal of Magnetism and Magnetic Materials, 454, 190–195, 2018.
  • [26] Kılıç Çetin, S., Akça, G., Aslan, M. S., Ekicibil, A., Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1-xNixO3 manganites, Journal of Material Science: Materials in Electronics, 32,10458–10472, 2021.
  • [27] Goldschmit, V.M., Geochemische Verteilungsgesetz der Element 7, Kristiania, Oslo, 1923-1938.
  • [28] Bhalla, A. S., Guo, R., Roy, R., The Perovskite Structure - a Review of its Role in Ceramic Science and Technology,” Material Research Innovations 4, 3–26, 2000.
  • [29] Shannon, R.D. , Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica A 32:5, 751–767, 1976.
  • [30] Kılıç Çetin, S., Acet, M., Ekicibil, A., Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤0.3) manganites, Journal of Alloys and Compounds, 727, 1253-1262, 2017.
  • [31] Sfifir, I., Ezaami, A., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Structural, magnetic and magnetocaloric properties in La0.7−xDyxSr0.3MnO3 manganites (x = 0.00, 0.01 and 0.03), Journal of Alloys and Compounds (696), 760–767, 2017.
  • [32] Akça, G., Kılıç Çetin, S., Ekicibil, A., Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites, Ceramics International, 43, 15811–15820, 2017.
  • [33] Bouzaiene, E., Dhahri, J., Hlil, E. K., Belmabrouk, H., Alrobei, H., Three-dimensional Heisenberg critical phenomena in La0.6Bi0.1Sr0.3-xCaxMn0.9Cu0.1O3 manganites (x = 0 and 0.05), Journal of Material Science: Materials in Electronics ,31, 18186–18197, 2020.
  • [34] Zhang, T., Wang, X. P., Fang, Q. F., Li, X. G., Magnetic and charge ordering in nanosized manganites, Applied Physics Reviews, 1, 031302, 2014
  • [35] M’nassri, R., Boudjada, N. C., Cheikhrouhou, A., Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites, Journal of Alloys and Compounds, 626, 20–28, 2015.
  • [36] Banerjee, B.K., On a generalised approach to first and second order magnetic transitions, Physics Letters, 12, 16–17, 1964.
  • [37] Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A., Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3, Journal of Magnetism and Magnetic Materials, 401, 593–599, 2016.
  • [38] Zhang, L., Li, L., Li, R., Fan, J., Ling, L., Tong, W., Qu, Z., Tan, S., Zhang, Y., Spin–lattice coupling studied by magnetic entropy and EPR in the CdCr2S4 system,Solid State Communications, 150, 2109–2113, 2010.
  • [39] Amaral, V.S., Amaral, J.S., Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials, Journal of Magnetism and Magnetic Materials, 272–276, 2104– 2105, 2004.
  • [40] Amaral, V.S., Araújo, J.P., Pogorelov, Y. G., Tavares, P.B., Sousa, J.B, Vieira, J.M., Discontinuous transition effects in manganites: magnetization study in the paramagnetic phase, Journal of Magnetism and Magnetic Materials, 242–245, 655–658, 2002.
  • [41] Yang, H., Zhang, P., Wu, Q., Ge, H., Pan, M., Effect of monovalent metal substitution on the magnetocaloric effect of perovskite manganites Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag), Journal of Magnetism and Magnetic Materials, 324, 3727–3730, 2012.
  • [42] Koubaa, M., Regaieg, Y., Koubaa, W.C., Cheikhrouhou, A., Ammar-Merah, S., Herbst, F., Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site, Journal of Magnetism and Magnetic Material, 323, 252–257, 2011.
  • [43] Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S., Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides, Journal of Material Science, 49, 8244–8251, 2014.
Year 2022, , 142 - 161, 30.06.2022
https://doi.org/10.37094/adyujsci.1113239

Abstract

Project Number

119F069.

References

  • [1] Sari, O., Balli, M., From conventional to magnetic refrigerator technology, International Journal of Refrigeration, 37, 8-15, 2014.
  • [2] Brown, J.S., Domanski, P.A., Review of alternative cooling technologies, Applied Thermal Engineering, 64, 252-262, 2014.
  • [3] Calm, J. M., Emissions and environmental impacts from air-conditioning and refrigeration systems, International Journal of Refrigeration, 25, 293-305, 2002.
  • [4] Omer, A.M., Energy use and environmental impacts: A general review, Journal of Renewable and Sustainable Energy, 1, 053101, 2009.
  • [5] Khosla, R., Miranda, N.D., Trotter, P.A., Mazzone, A., Renaldi, R., McElroy, C., Cohen, F., Jani, A., Perera-Salazar, R., McCulloch, M., Cooling for sustainable development, Nature Sustainability, 4, 201-208, 2021.
  • [6] Crossley, S., Mathur, N., Moya, X., New developments in caloric materials for cooling applications, Aip Advances, 5, 067153, 2015.
  • [7] Akça, G., Kılıç Çetin, S., Ekicibil, A., Composite xLa0.7Ca0.2Sr0.1MnO3/(1− x) La0.7Te0.3MnO3 materials: magnetocaloric properties around room temperature, Journal of Materials Science: Materials in Electronics, 31, 6796–6808, 2020.
  • [8] Ayaş, A.O., Kılıç Çetin, S., Akyol, M., Akça, G., Ekicibil, A., Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x=0.0, 0.1 and 0.2) perovskite system, Journal of Molecular Structure, 1200, 127120, 2020.
  • [9] Dhahri, A., Dhahri, J., Dhahri, E., Effect of potassium doping on physical properties of perovskites La0.8Cd0.2−xKxMnO3, Journal of Alloys and Compounds, 489, 9-12, 2010.
  • [10] Elghoul, A., Krichene, A., Boujelben, W., Landau theory and critical behavior near the ferromagnetic-paramagnetic transition temperature in Pr0.63A0.07Sr0.3MnO3 (A=Pr, Sm and Bi) manganites, Journal of Physics and Chemistry of Solids, 108, 52-60, 2017.
  • [11] Pecharsky, V.K., Gschneidner Jr, K.A., Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials, 200, 44-56, 1999.
  • [12] Biswas, A., Chandra, S., Phan, M.H., Srikanth, H., Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power, Journal of Alloys and Compounds, 545, 157-161, 2012.
  • [13] Phan, M.H., Yu, S.C., Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308, 325-340, 2007.
  • [14] Tishin, A.M., Spichkin, Y.I., The Magnetocaloric Effect and its Applications, IOP Publishing LTD, London, 2003.
  • [15] Franco, V., Conde, A., Kuz’min, M. D., Romero-Enrique, J. M., The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?, Journal of Applied Physics 105, 07A917, 2009.
  • [16] Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Hlil E. K., Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state, RSC Advances, 6, 54299–54309, 2016.
  • [17] Lyubin, J., Magnetocaloric materials for energy efficient cooling, Journal of Physics D: Applied Physics, 50, 053002, 2017.
  • [18] Paticopoulos, S.C., Caballero-Flores, R., Franco, V., Bla ́zquez, J.S., Cond, A., Knipling, K.E., Willard, M.A., Enhancement of the magnetocaloric effect in composites: Experimental validation, Solid State Communications, 152 , 1590–1594, 2012.
  • [19] Monfared, B. Palm, B., Material requirements for magnetic refrigeration applications, International Journal of Refrigeration, 96, 25–37,2018.
  • [20] Coey, J.M.D., Viret, M., Von Molnár, S., Mixed-valence manganites, Advances in Physics, 48:2, Taylor & Francis, 167-293, 1999.
  • [21] Rostamnejadi A., Salamati, H., Kameli, P., Ahmadvand, H., Superparamagnetic behavior of La0.67Sr0.33MnO3 nanoparticles prepared via sol–gel method, Journal of Magnetism and Magnetic Materials, 321, 3126–3131, 2009.
  • [22] Zverev, V.I., Pyatakov, A.P., Shtil, A.A., Tishin, A.M., Novel applications of magnetic materials and technologies for medicine, Journal of Magnetism and Magnetic Materials, 459, 182–186, 2018.
  • [23] Thaljaou, R., Boujelben, W., Pekała, M., Pekała, K., Mucha, J., Cheikhrouhou, A., Structural, magnetic and transport study of monovalent Na-doped manganite Pr0.55Na0.05Sr0.4MnO3, Journal of Alloys and Compounds, 558, 236–243, 2013.
  • [24] Levy, P., Parisi, F., Polla, G., Vega, D., Leyva, G., Lanza, H., Controlled phase separation in La0.5Ca0.5MnO3, Physical Review B, 62, 6437-6441, 2000.
  • [25] Walha, I., Smari, M., M’nasri, T., Dhahri, E., Structural, magnetic, and magnetocaloric properties of Ag-doped in the La0.6Ca0.4MnO3 compound, Journal of Magnetism and Magnetic Materials, 454, 190–195, 2018.
  • [26] Kılıç Çetin, S., Akça, G., Aslan, M. S., Ekicibil, A., Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1-xNixO3 manganites, Journal of Material Science: Materials in Electronics, 32,10458–10472, 2021.
  • [27] Goldschmit, V.M., Geochemische Verteilungsgesetz der Element 7, Kristiania, Oslo, 1923-1938.
  • [28] Bhalla, A. S., Guo, R., Roy, R., The Perovskite Structure - a Review of its Role in Ceramic Science and Technology,” Material Research Innovations 4, 3–26, 2000.
  • [29] Shannon, R.D. , Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica A 32:5, 751–767, 1976.
  • [30] Kılıç Çetin, S., Acet, M., Ekicibil, A., Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤0.3) manganites, Journal of Alloys and Compounds, 727, 1253-1262, 2017.
  • [31] Sfifir, I., Ezaami, A., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Structural, magnetic and magnetocaloric properties in La0.7−xDyxSr0.3MnO3 manganites (x = 0.00, 0.01 and 0.03), Journal of Alloys and Compounds (696), 760–767, 2017.
  • [32] Akça, G., Kılıç Çetin, S., Ekicibil, A., Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites, Ceramics International, 43, 15811–15820, 2017.
  • [33] Bouzaiene, E., Dhahri, J., Hlil, E. K., Belmabrouk, H., Alrobei, H., Three-dimensional Heisenberg critical phenomena in La0.6Bi0.1Sr0.3-xCaxMn0.9Cu0.1O3 manganites (x = 0 and 0.05), Journal of Material Science: Materials in Electronics ,31, 18186–18197, 2020.
  • [34] Zhang, T., Wang, X. P., Fang, Q. F., Li, X. G., Magnetic and charge ordering in nanosized manganites, Applied Physics Reviews, 1, 031302, 2014
  • [35] M’nassri, R., Boudjada, N. C., Cheikhrouhou, A., Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites, Journal of Alloys and Compounds, 626, 20–28, 2015.
  • [36] Banerjee, B.K., On a generalised approach to first and second order magnetic transitions, Physics Letters, 12, 16–17, 1964.
  • [37] Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A., Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3, Journal of Magnetism and Magnetic Materials, 401, 593–599, 2016.
  • [38] Zhang, L., Li, L., Li, R., Fan, J., Ling, L., Tong, W., Qu, Z., Tan, S., Zhang, Y., Spin–lattice coupling studied by magnetic entropy and EPR in the CdCr2S4 system,Solid State Communications, 150, 2109–2113, 2010.
  • [39] Amaral, V.S., Amaral, J.S., Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials, Journal of Magnetism and Magnetic Materials, 272–276, 2104– 2105, 2004.
  • [40] Amaral, V.S., Araújo, J.P., Pogorelov, Y. G., Tavares, P.B., Sousa, J.B, Vieira, J.M., Discontinuous transition effects in manganites: magnetization study in the paramagnetic phase, Journal of Magnetism and Magnetic Materials, 242–245, 655–658, 2002.
  • [41] Yang, H., Zhang, P., Wu, Q., Ge, H., Pan, M., Effect of monovalent metal substitution on the magnetocaloric effect of perovskite manganites Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag), Journal of Magnetism and Magnetic Materials, 324, 3727–3730, 2012.
  • [42] Koubaa, M., Regaieg, Y., Koubaa, W.C., Cheikhrouhou, A., Ammar-Merah, S., Herbst, F., Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site, Journal of Magnetism and Magnetic Material, 323, 252–257, 2011.
  • [43] Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S., Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides, Journal of Material Science, 49, 8244–8251, 2014.
There are 43 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics
Journal Section Physics
Authors

Selda Kılıç Çetin 0000-0003-4112-4475

Gönül Akça 0000-0001-7187-9516

Mehmet Selim Aslan 0000-0001-7086-9105

Ahmet Ekicibil 0000-0003-3071-0444

Project Number 119F069.
Publication Date June 30, 2022
Submission Date May 9, 2022
Acceptance Date June 10, 2022
Published in Issue Year 2022

Cite

APA Kılıç Çetin, S., Akça, G., Aslan, M. S., Ekicibil, A. (2022). Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites. Adıyaman University Journal of Science, 12(1), 142-161. https://doi.org/10.37094/adyujsci.1113239
AMA Kılıç Çetin S, Akça G, Aslan MS, Ekicibil A. Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites. ADYU J SCI. June 2022;12(1):142-161. doi:10.37094/adyujsci.1113239
Chicago Kılıç Çetin, Selda, Gönül Akça, Mehmet Selim Aslan, and Ahmet Ekicibil. “Effects of Copper Substitution to Mn-Site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-XCuxO3 Manganites”. Adıyaman University Journal of Science 12, no. 1 (June 2022): 142-61. https://doi.org/10.37094/adyujsci.1113239.
EndNote Kılıç Çetin S, Akça G, Aslan MS, Ekicibil A (June 1, 2022) Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites. Adıyaman University Journal of Science 12 1 142–161.
IEEE S. Kılıç Çetin, G. Akça, M. S. Aslan, and A. Ekicibil, “Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites”, ADYU J SCI, vol. 12, no. 1, pp. 142–161, 2022, doi: 10.37094/adyujsci.1113239.
ISNAD Kılıç Çetin, Selda et al. “Effects of Copper Substitution to Mn-Site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-XCuxO3 Manganites”. Adıyaman University Journal of Science 12/1 (June 2022), 142-161. https://doi.org/10.37094/adyujsci.1113239.
JAMA Kılıç Çetin S, Akça G, Aslan MS, Ekicibil A. Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites. ADYU J SCI. 2022;12:142–161.
MLA Kılıç Çetin, Selda et al. “Effects of Copper Substitution to Mn-Site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-XCuxO3 Manganites”. Adıyaman University Journal of Science, vol. 12, no. 1, 2022, pp. 142-61, doi:10.37094/adyujsci.1113239.
Vancouver Kılıç Çetin S, Akça G, Aslan MS, Ekicibil A. Effects of Copper Substitution to Mn-site on Magnetic and Magnetocaloric Properties of La0.7Sr0.3Mn1-xCuxO3 Manganites. ADYU J SCI. 2022;12(1):142-61.

...