Research Article
BibTex RIS Cite

Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials

Year 2022, , 315 - 323, 30.12.2022
https://doi.org/10.37094/adyujsci.1210860

Abstract

Developing low-cost, high-durability and high-performance electrocatalytic materials are needed for hydrogen/oxygen evolution (HER/OER) and oxygen reduction reactions (ORR) which are crucial steps for regenerative fuel cells. Although Pt-based, RuO2 and IrO2 materials are widely used for these purposes, other alternative materials are required with desired properties. In this regard, we studied the electrochemical properties of lanthanum-based perovskites which were synthesized by sol-gel method. We investigated the substitution of 10% Dy and 30% Sr into the A site and a small amount of Bi (x: 0, 0.03 and 0.1) added into the B site of La0.60Dy0.10Sr0.30Mn(1-x)BixO3 perovskites on HER, OER and ORR in 1 M KOH alkaline media at room temperature. While undoped and 3% Bi doped samples exhibited poor HER activities, the effect of 10% Bi in the structure enhanced HER activities by lowering onset potential from -1.389 V to -1.036 V (vs. Ag/AgCl) and increasing specific current density from -13.3 mA cm-2 to -121.8 mA cm-2 at -1.4 V. Similarly, OER activity was also improved due to 10% Bi and onset potential and specific current density was found to be 0.758 V and 88.3 mA cm-2, respectively. The large Tafel slopes indicate that the ORR mechanism is possible in the structure but at a slow rate. The addition of 10% Bi in the structure resulted in a very high resistance of 19.3 kΩ and it reduced to a desired value of 3.5 kΩ due to ion conducting paths developed in the catalysts.

Supporting Institution

Çukurova Üniversitesi

Project Number

FBA-2021-14197

Thanks

This work was supported by Cukurova University, Adana, Turkey, under Scientific Research Funding Grand No: FBA-2021-14197.

References

  • Luo, D., Su, R., Zhang, W., Gong, Q., Zhu, R., Minimizing non-radiative recombination losses in perovskite solar cells, Nature Reviews Materials, 5(1), 44-60, 2020.
  • Zhu, H., Zhang, P., Dai, S., Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis, ACS Catalysis, 5(11), 6370-6385, 2015.
  • Tanaka, H., Misono, M., Advances in designing perovskite catalysts, Current Opinion in Solid State and Materials Science, 5(5), 381-387, 2001.
  • Jiang, L.Q., Guo, J.K., Liu, H.B., Zhu, M., Zhou, X., Wu, P., Li, C.H., Prediction of lattice constant in cubic perovskites, Journal of Physics and Chemistry of Solids, 67(7), 1531-1536, 2006.
  • Akça, G., Çetin, S., Ekicibil, A., Composite xLa0.7Ca0.2Sr0.1MnO3/(1 − x)La0.7Te0.3MnO3 materials: magnetocaloric properties around room temperature, Journal of Materials Science: Materials in Electronics, 31, 2020.
  • Laouyenne, M.R., Baazaoui, M., Mahjoub, S., Cheikhrouhou-Koubaa, W., Oumezzine, M., Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0.2Mn1−xBixO3 (0 ≤ x ≤ 0.06) perovskite manganites, Journal of Alloys and Compounds, 720, 212-220, 2017.
  • Gaur, A., Meenakshi, Nagpal, V., Bisht, P., Mahato, R.N., Effect of Bi-doping on structural, magneto-caloric and magneto-resistive properties of La0.67-xBixCa0.33MnO3 perovskites, Solid State Communications, 340, 114504, 2021.
  • Khan, A.A., Hira, U., Sher, F., Large relative cooling power of Bi-doped La0.8−xBixSr0.08(Ca0.55Ba0.45)0.12MnO3 (x=0.0, 0.1 and 0.3) perovskites: Magnetic and magnetocaloric properties, Ceramics International, 43(9), 7351-7357, 2017.
  • Przyslupski, P., Komissarov, I., Paszkowicz, W., Dluzewski, P., Minikayev, R., Sawicki, M., Structure and magnetic characterization of La0.67Sr0.33MnO3/YBa2Cu3O7 superlattices, Journal of Applied Physics, 95(5), 2906-2911, 2004.
  • Qi, S., Zhang, W., Li, X., Wang, Q., Zhu, Z., Zhou, T., Wang, G., Xie, A., Luo, S., Catalytic oxidation of toluene over B-site doped La-based perovskite LaNixB1−xO3 (B = Co, Cu) catalysts, Environmental Progress Sustainable Energy, e13965, 2022.
  • Kılıç Çetin, S., Akça, G., Kaya, D., Ayaş, A.O., Ekicibil, A., Synthesis and characterization of bifunctional Ru doped La-based perovskites for magnetic refrigeration and energy storage systems, International Journal of Hydrogen Energy, 47(97), 40999-41009, 2022.
  • Barik, S.K., Mahendiran, R., Effect of Bi Doping on Magnetoresistance in La0.7-xBixSr0.3MnO3, Journal of Nanoscience and Nanotechnology, 11(3), 2603-2606, 2011.
  • Dhahri, A., Dhahri, E., Hlil, E.K., Large magnetocaloric effect in manganese perovskite La0.67−xBixBa0.33MnO3 near room temperature, RSC advances, 9(10), 5530-5539, 2019.
  • Kong, F.-D., Zhang, S., Yin, G.-P., Zhang, N., Wang, Z.-B., Du, C.-Y., Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen catalyst for unitized regenerative fuel cell, 210, 321-326, 2012.
  • Du, K., Zhang, L., Shan, J., Guo, J., Mao, J., Yang, C.-C., Wang, C.-H., Hu, Z., Ling, T., Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation, Nature Communications, 13(1), 5448, 2022.
  • Patrakeev, M., Bahteeva, J., Mitberg, E., Leonidov, I., Kozhevnikov, V., Poeppelmeier, K., Electron/hole and ion transport in La1−xSrxFeO3−δ, Journal of Solid State Chemistry, 172, 219-231, 2003.
  • Silva, R.A., Soares, C.O., Afonso, R., Carvalho, M.D., Tavares, A.C., Jorge, M.E.M., Gomes, A., Pereira, M.I.d.S., Rangel, C.M., Synthesis and electrocatalytic properties of La0.8Sr0.2FeO3−δ perovskite oxide for oxygen reactions, AIMS Materials Science, 4(4), 991-1009, 2017.
  • Li, C., Baek, J.-B., Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction, ACS Omega, 5(1), 31-40, 2020.
  • Alegre, C., Modica, E., Rodlert-Bacilieri, M., Mornaghini, F.C., Aricò, A.S., Baglio, V., Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment, International Journal of Hydrogen Energy, 42(46), 28063-28069, 2017.
  • Co, A.C., Xia, S.J., Birss, V.I., A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes, Journal of the Electrochemical Society, 152(3), A570, 2005.
  • Jiang, S.P., Zhang, J.P., Foger, K., Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on  O2 Reduction Reaction, Journal of the Electrochemical Society, 147(9), 3195, 2000.
  • Shafi, P.M., Bose, A.C., Vinu, A., Electrochemical Material Processing via Continuous Charge-Discharge Cycling: Enhanced Performance upon Cycling for Porous LaMnO3 Perovskite Supercapacitor Electrodes, ChemElectroChem, 5(23), 3723-3730, 2018.

Düşük Bi Katkılı Manyetikalorik La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Malzemelerin Elektrokimyasal Özellikleri

Year 2022, , 315 - 323, 30.12.2022
https://doi.org/10.37094/adyujsci.1210860

Abstract

Rejeneratif yakıt hücreleri için çok önemli adımları olan hidrojen/oksijen evrimi (HER/OER) ve oksijen indirgeme reaksiyonlarının (ORR) düşük maliyetli, yüksek dayanıklılığa sahip ve yüksek performanslı elektrokatalitik malzemelerin geliştirilmesine ihtiyaç duyulmaktadır. Pt esaslı, RuO2 ve IrO2 malzemeler bu amaç için yaygın olarak kullanılsa da, istenilen özelliklerde alternatif malzemelere ihtiyaç duyulmaktadır. Bu bağlamda sol-jel yöntemi ile sentezlenen lantan bazlı perovskitlerin elektrokimyasal özelliklerini çalıştık. La0.60Dy0.10Sr0.30Mn(1-x)BixO3 perovskit yapısında, A bölgesine %10 Dy ve %30 Sr ve B bölgesine az miktarda Bi (x: 0, 0.03 ve 0.1) katkılanmasını oda sıcaklığında 1 M KOH alkali ortamda HER, OER ve ORR araştırdık. Katkılanmamış ve %3 Bi katkılanmış örnekler zayıf HER aktiviteleri sergilerken, yapıdaki %10 Bi'nin etkisi başlangıç potansiyelini -1,389 V'tan -1,036 V'a düşürerek (Ag/AgCl'ye karşı) ve spesifik akımı yoğunluğunu -13,3 mA cm-2'den -121,8 mA cm-2'ye -1,4 V'ta arttışını sağladı. Benzer şekilde OER aktivitesi de %10 Bi sayesinde iyileşmiş ve başlangıç potansiyeli ve özgül akım yoğunluğu sırasıyla 0,758 V ve 88,3 mA cm-2 olarak bulunmuştur. Büyük Tafel eğimleri, ORR mekanizmasının yapıda gerçekleşebildiğini ancak yavaş bir hızda olduğunu göstermektedir. Yapıya %10 Bi ilavesi 19,3 kΩ gibi çok yüksek bir direnç ile sonuçlanmış ve katalizörlerde oluşan iyon iletim yollarından dolayı 3,5 kΩ gibi istenen bir değere düşmüştür.

Project Number

FBA-2021-14197

References

  • Luo, D., Su, R., Zhang, W., Gong, Q., Zhu, R., Minimizing non-radiative recombination losses in perovskite solar cells, Nature Reviews Materials, 5(1), 44-60, 2020.
  • Zhu, H., Zhang, P., Dai, S., Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis, ACS Catalysis, 5(11), 6370-6385, 2015.
  • Tanaka, H., Misono, M., Advances in designing perovskite catalysts, Current Opinion in Solid State and Materials Science, 5(5), 381-387, 2001.
  • Jiang, L.Q., Guo, J.K., Liu, H.B., Zhu, M., Zhou, X., Wu, P., Li, C.H., Prediction of lattice constant in cubic perovskites, Journal of Physics and Chemistry of Solids, 67(7), 1531-1536, 2006.
  • Akça, G., Çetin, S., Ekicibil, A., Composite xLa0.7Ca0.2Sr0.1MnO3/(1 − x)La0.7Te0.3MnO3 materials: magnetocaloric properties around room temperature, Journal of Materials Science: Materials in Electronics, 31, 2020.
  • Laouyenne, M.R., Baazaoui, M., Mahjoub, S., Cheikhrouhou-Koubaa, W., Oumezzine, M., Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0.2Mn1−xBixO3 (0 ≤ x ≤ 0.06) perovskite manganites, Journal of Alloys and Compounds, 720, 212-220, 2017.
  • Gaur, A., Meenakshi, Nagpal, V., Bisht, P., Mahato, R.N., Effect of Bi-doping on structural, magneto-caloric and magneto-resistive properties of La0.67-xBixCa0.33MnO3 perovskites, Solid State Communications, 340, 114504, 2021.
  • Khan, A.A., Hira, U., Sher, F., Large relative cooling power of Bi-doped La0.8−xBixSr0.08(Ca0.55Ba0.45)0.12MnO3 (x=0.0, 0.1 and 0.3) perovskites: Magnetic and magnetocaloric properties, Ceramics International, 43(9), 7351-7357, 2017.
  • Przyslupski, P., Komissarov, I., Paszkowicz, W., Dluzewski, P., Minikayev, R., Sawicki, M., Structure and magnetic characterization of La0.67Sr0.33MnO3/YBa2Cu3O7 superlattices, Journal of Applied Physics, 95(5), 2906-2911, 2004.
  • Qi, S., Zhang, W., Li, X., Wang, Q., Zhu, Z., Zhou, T., Wang, G., Xie, A., Luo, S., Catalytic oxidation of toluene over B-site doped La-based perovskite LaNixB1−xO3 (B = Co, Cu) catalysts, Environmental Progress Sustainable Energy, e13965, 2022.
  • Kılıç Çetin, S., Akça, G., Kaya, D., Ayaş, A.O., Ekicibil, A., Synthesis and characterization of bifunctional Ru doped La-based perovskites for magnetic refrigeration and energy storage systems, International Journal of Hydrogen Energy, 47(97), 40999-41009, 2022.
  • Barik, S.K., Mahendiran, R., Effect of Bi Doping on Magnetoresistance in La0.7-xBixSr0.3MnO3, Journal of Nanoscience and Nanotechnology, 11(3), 2603-2606, 2011.
  • Dhahri, A., Dhahri, E., Hlil, E.K., Large magnetocaloric effect in manganese perovskite La0.67−xBixBa0.33MnO3 near room temperature, RSC advances, 9(10), 5530-5539, 2019.
  • Kong, F.-D., Zhang, S., Yin, G.-P., Zhang, N., Wang, Z.-B., Du, C.-Y., Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen catalyst for unitized regenerative fuel cell, 210, 321-326, 2012.
  • Du, K., Zhang, L., Shan, J., Guo, J., Mao, J., Yang, C.-C., Wang, C.-H., Hu, Z., Ling, T., Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation, Nature Communications, 13(1), 5448, 2022.
  • Patrakeev, M., Bahteeva, J., Mitberg, E., Leonidov, I., Kozhevnikov, V., Poeppelmeier, K., Electron/hole and ion transport in La1−xSrxFeO3−δ, Journal of Solid State Chemistry, 172, 219-231, 2003.
  • Silva, R.A., Soares, C.O., Afonso, R., Carvalho, M.D., Tavares, A.C., Jorge, M.E.M., Gomes, A., Pereira, M.I.d.S., Rangel, C.M., Synthesis and electrocatalytic properties of La0.8Sr0.2FeO3−δ perovskite oxide for oxygen reactions, AIMS Materials Science, 4(4), 991-1009, 2017.
  • Li, C., Baek, J.-B., Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction, ACS Omega, 5(1), 31-40, 2020.
  • Alegre, C., Modica, E., Rodlert-Bacilieri, M., Mornaghini, F.C., Aricò, A.S., Baglio, V., Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment, International Journal of Hydrogen Energy, 42(46), 28063-28069, 2017.
  • Co, A.C., Xia, S.J., Birss, V.I., A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes, Journal of the Electrochemical Society, 152(3), A570, 2005.
  • Jiang, S.P., Zhang, J.P., Foger, K., Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on  O2 Reduction Reaction, Journal of the Electrochemical Society, 147(9), 3195, 2000.
  • Shafi, P.M., Bose, A.C., Vinu, A., Electrochemical Material Processing via Continuous Charge-Discharge Cycling: Enhanced Performance upon Cycling for Porous LaMnO3 Perovskite Supercapacitor Electrodes, ChemElectroChem, 5(23), 3723-3730, 2018.
There are 22 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics, Physical Chemistry
Journal Section Physics
Authors

Mustafa Zeki Kurt 0000-0002-3980-0692

Project Number FBA-2021-14197
Publication Date December 30, 2022
Submission Date November 28, 2022
Acceptance Date December 23, 2022
Published in Issue Year 2022

Cite

APA Kurt, M. Z. (2022). Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials. Adıyaman University Journal of Science, 12(2), 315-323. https://doi.org/10.37094/adyujsci.1210860
AMA Kurt MZ. Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials. ADYU J SCI. December 2022;12(2):315-323. doi:10.37094/adyujsci.1210860
Chicago Kurt, Mustafa Zeki. “Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials”. Adıyaman University Journal of Science 12, no. 2 (December 2022): 315-23. https://doi.org/10.37094/adyujsci.1210860.
EndNote Kurt MZ (December 1, 2022) Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials. Adıyaman University Journal of Science 12 2 315–323.
IEEE M. Z. Kurt, “Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials”, ADYU J SCI, vol. 12, no. 2, pp. 315–323, 2022, doi: 10.37094/adyujsci.1210860.
ISNAD Kurt, Mustafa Zeki. “Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials”. Adıyaman University Journal of Science 12/2 (December 2022), 315-323. https://doi.org/10.37094/adyujsci.1210860.
JAMA Kurt MZ. Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials. ADYU J SCI. 2022;12:315–323.
MLA Kurt, Mustafa Zeki. “Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials”. Adıyaman University Journal of Science, vol. 12, no. 2, 2022, pp. 315-23, doi:10.37094/adyujsci.1210860.
Vancouver Kurt MZ. Electrochemical Properties of Low Bi Doped La0.60Dy0.10Sr0.30Mn(1-x)BixO3 Perovskite Materials. ADYU J SCI. 2022;12(2):315-23.

...