Research Article
BibTex RIS Cite

Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process

Year 2023, , 74 - 88, 31.12.2023
https://doi.org/10.37094/adyujsci.1338847

Abstract

Multi-functional FeCo nanoparticles (NPs) exhibit unique structural, magnetic, and catalytic properties, making them versatile materials with potential applications in diverse fields. In this work, we investigated the structural, electrochemical, and magnetic properties of as- prepared FeCo NPs synthesis by polyol method. X-ray diffraction analysis revealed multiphase structures: FeCo and α-Fe2O3 phases and scanning electron microscopy images confirmed spherical-like structures of FeCo NPs with an average size of 12.4 ± 0.1 nm. The electrochemical properties of FeCo NPs were investigated using a three-electrode setup in a 1 M KOH electrolyte at room temperature. The onset potentials for FeCo catalysts were found to be -0.15 V for ORR, 0.25 V for OER, and -1.26 V for HER. Tafel measurements further elucidated the reaction mechanism, revealing corrosion potentials of -0.165 V for ORR and 0.215 V for OER, with Tafel slopes of 228 mV dec-1 and 48 mV dec-1, respectively. A significant increase in magnetization was observed below 25 K in both zero-field-cooled and field-cooled curves, a magnetic transition temperature, Ts, occurs at 15 K, possibly indicating a ferromagnetic-to-antiferromagnetic phase transition. The hysteresis loop measurements revealed coercive field values ranging from 968 Oe at 5 K to approximately 206 Oe at 320 K, indicating a relaxation in magnetic spin orientation with increasing temperature. The saturation magnetization (Ms) values were recorded as 15.2 emu/g under a 5 T magnetic field, and the remanent magnetization (Mr) showed dominant ferromagnetic properties at 5 K with an Mr/Ms ratio indicating soft magnetic behavior. The magnetic susceptibility of FeCo NP exhibited a peak at approximately 25 K, and the Curie-Weiss law provided an estimated θ angle of -9.58°, suggesting antiferromagnetic interactions.

Supporting Institution

Cukurova Unıversıty

Project Number

FBA-2021-13479

References

  • Zhang, H.-M., Wang, J.-J., Meng, Y., Sun, J., Recent advances in amorphous metal phosphide electrocatalysts for hydrogen evolution reaction, International Journal of Hydrogen Energy, 47(85), 36084-36097, 2022.
  • Kim, J.S., Kim, B., Kim, H., Kang, K., Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, 8(11), 1702774, 2018.
  • Litvinov, D., Chunseng, E., Parekh, V., Smith, D., Rantschler, J., Zhang, S., Donner, W., Lee, T.R., Ruchhoeft, P., Weller, D., Khizroev, S., Design and fabrication of high anisotropy nanoscale bit-patterned magnetic recording medium for data storage applications, ECS Transactions, 3(25), 249-258, 2019.
  • Liu, Y., Li, D., Sun, S., Pt-Based composite nanoparticles for magnetic, catalytic, and biomedical applications, Journal of Materials Chemistry, 21(34), 12579-12587, 2011.
  • Koutsopoulos, S., Barfod, R., Eriksen, K.M., Fehrmann, R., Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon, Journal of Alloys and Compounds, 725, 1210-1216, 2017.
  • Shokuhfar, A., Afghahi, S.S.S., Size controlled synthesis of FeCo alloy nanoparticles and study of the particle size and distribution effects on magnetic properties, Advances in Materials Science and Engineering, 2014, 1-10, 2014.
  • Liu, X.G., Geng, D.Y., Ma, S., Meng, H., Tong, M., Kang, D.J., Zhang, Z.D., Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules, Journal of Applied Physics, 104(6), 064319, 2008.
  • Park, J.-H., Woo, S., Lee, J., Jung, H.Y., Ro, J.C., Park, C., Lim, B., Suh, S.-J., Facile modified polyol synthesis of FeCo nanoparticles with oxyhydroxide surface layer as efficient oxygen evolution reaction electrocatalysts, International Journal of Hydrogen Energy, 46(29), 15398-15409, 2021.
  • Larcher, D., Patrice, R., Preparation of metallic powders and alloys in polyol media: a thermodynamic approach, Journal of Solid State Chemistry, 154(2), 405-411, 2000.
  • Park, J.-H., Ro, J.C., Suh, S.-J., FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution, Applied Surface Science, 589, 153041, 2022.
  • Zamanpour, M., Chen, Y., Hu, B., Carroll, K., Huba, Z.J., Carpenter, E.E., Lewis, L.H., Harris, V.G., Large-scale synthesis of high moment feco nanoparticles using modified polyol synthesis, Journal of Applied Physics, 111(7), 2012.
  • Rafique, M.Y., Pan, L., Zubair Iqbal, M., Javed, Q.-u.-a., Qiu, H., Rafi ud, d., Farooq, M.H., Guo, Z., 3-D flower like FeCo alloy nanostructures assembled with nanotriangular prism: facile synthesis, magnetic properties, and effect of NaOH on its formation, Journal of Alloys and Compounds, 550, 423-430, 2013.
  • Yang, F.J., Yao, J., Min, J.J., Li, J.H., Chen, X.Q., Synthesis of high saturation magnetization FeCo nanoparticles by polyol reduction method, Chemical Physics Letters, 648, 143-146, 2016.
  • Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., Peron, J., Piquemal, J.Y., Sicard, L., Viau, G., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, Shapes And Compositions, Chemical Society Reviews, 47(14), 5187-5233, 2018.
  • Poudyal, N., Rong, C.-b., Liu, J.P., Morphological and magnetic characterization of Fe, Co, and FeCo nanoplates and nanoparticles prepared by surfactants-assisted ball milling, Journal of Applied Physics, 109, 07B526, 2011.
  • Hiyama, H., Kodama, D., Matsumoto, T., Shinoda, K., Kasuya, R., Balachandran, J., Synthesis and magnetic properties of platelet Fe–Co particles, Journal of Applied Physics, 107(9), 2010.
  • Zehani, K., Bez, R., Moscovici, J., Mazaleyrat, F., Mliki, N., Bessais, L., High magnetic moment of FeCo nanoparticles produced in polyol medium, IEEE Transactions on Magnetics, 50(4), 1-5, 2014.
  • Suman, S., Chahal, S., Kumar, A., Kumar, P., Zn Doped α-Fe2O3: An efficient material for UV driven photocatalysis and electrical conductivity, 10(4), 273, 2020.
  • Farahmandjou, M., Honarbakhsh, S., Behrouzinia, S., FeCo nanorods preparation using new chemical synthesis, Journal of Superconductivity and Novel Magnetism, 31(12), 4147- 4152, 2018.
  • Hossain, M.A., Synthesis of carbon nanoparticles from kerosene and their characterization by SEM⁄EDX, XRD and FTIR, American Journal of Nanoscience and Nanotechnology, 1(2), 2013.
  • Zhang, M., Lin, Y., Mullen, T.J., Lin, W.-f., Sun, L.-D., Yan, C.-H., Patten, T.E., Wang, D., Liu, G.-y., Improving Hematite’s solar water splitting efficiency by incorporating Rare-Earth upconversion nanomaterials, The Journal of Physical Chemistry Letters, 3(21), 3188- 3192, 2012.
  • Cappellari, P.S., Baena-Moncada, A.M., Coneo-Rodríguez, R., Moreno, M.S., Barbero, C.A., Planes, G.A., Catalytic enhancement of formic acid electro-oxidation through surface modifications with gold on supported Pt nanoparticles, International Journal of Hydrogen Energy, 44(3), 1967-1972, 2019.
  • Puratchi Mani, M., Ponnarasi, K., Rajendran, A., Venkatachalam, V., Thamizharasan, K., Jothibas, M., Electrochemical behavior of an advanced FeCo2O4 electrode for supercapacitor applications, Journal of Electronic Materials, 49(10), 5964-5969, 2020.
  • Gao, F., Zhang, Y., Wu, Z., You, H., Du, Y., Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis, Coordination Chemistry Reviews, 436, 213825, 2021.
  • Meierhofer, F., Fritsching, U., Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics, Energy & Fuels, 35(7), 5495-5537, 2021.
  • Yoo, H., Oh, K., Lee, Y.R., Row, K.H., Lee, G., Choi, J., Simultaneous co-doping of RuO2 And IrO2 into Anodic TiO2 Nanotubes: A binary catalyst for electrochemical water splitting, International Journal of Hydrogen Energy, 42(10), 6657-6664, 2017.
  • Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, Journal of the American Chemical Society, 126(1), 273-279, 2004.
  • Wesselinowa, J.M., Apostolova, I., Size, Anisotropy and doping effects on the coercive field of ferromagnetic nanoparticles, Journal of Physics: Condensed Matter, 19(40), 406235, 2007.
  • Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., Room- temperature coercivity enhancement in mechanically alloyed antiferromagnetic-ferromagnetic powders, Applied Physics Letters, 75(20), 3177-3179, 1999.
  • Karipoth, P., Thirumurugan, A., Velaga, S., Greneche, J.-M., Justin Joseyphus, R., Magnetic properties of FeCo alloy nanoparticles synthesized through instant chemical reduction, Journal of Applied Physics, 120(12), 2016.
  • Kemp, S.J., Ferguson, R.M., Khandhar, A.P., Krishnan, K.M., Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization, RSC Advances, 6(81), 77452-77464, 2016.
  • Kurniawan, M., Perrin, A., Xu, P., Keylin, V., McHenry, M., Curie temperature engineering in high entropy alloys for magnetocaloric applications, IEEE Magnetics Letters, 7, 1-5, 2016.
  • Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P., Static and dynamic magnetic properties of spherical magnetite nanoparticles, Journal of Applied Physics, 94(5), 3520-3528, 2003.
  • Stipe, B.C., Rezaei, M.A., Ho, W., Gao, S., Persson, M., Lundqvist, B.I., Single- molecule dissociation by tunneling electrons, Physical Review Letters, 78(23), 4410-4413, 1997.

Poliol Prosesi ile Sentezlenen FeCo nanoparçacıkların Yapısal, Manyetik ve Katalitik Özellikleri

Year 2023, , 74 - 88, 31.12.2023
https://doi.org/10.37094/adyujsci.1338847

Abstract

Çok işlevli FeCo nanoparçacıkları (NP'ler), manyetik, katalitik ve yapısal özelliklerin bir kombinasyonunu sergileyerek, çeşitli alanlarda potansiyel uygulamalara sahip çok yönlü malzemelerdir. Bu çalışmada, poliol yöntemi ile sentezlenen FeCo NP'lerin yapısal, elektrokimyasal ve manyetik özelliklerini araştırdık. X-ışını kırınım analizi, FeCo ve α-Fe2O3 fazlarını gösteren çoklu yapılar ortaya çıkardı ve taramalı elektron mikroskobu görüntüleri, ortalama boyutu 12.4 ± 0.1 nm olan küresel yapıları doğruladı. FeCo NP'lerin elektrokimyasal özellikleri, oda sıcaklığında 1 M KOH elektroliti içinde üç elektrot düzeneği kullanılarak incelendi. FeCo katalizörleri için başlangıç potansiyelleri, ORR (Oksijen indirgeme reaksiyonu) için -0.15 V, OER (Oksijen oluşum reaksiyonu) için 0.25 V ve HER (Hidrojen oluşum reaksiyonu) için -1.26 V olarak bulundu. Tafel ölçümleri, ORR için -0.165 V ve OER için 0.215 V'lik korozyon potansiyellerini ve sırasıyla 228 mV dec-1 ve 48 mV dec-1'lik Tafel eğimlerini ortaya çıkardı. Hem manyetik alanla soğutulmuş hem de manyetik alansız soğutulmuş eğrilerde 25 K'nin altında belirgin bir manyetizasyon artışı gözlendi ve 15 K'de bir manyetik bir geçiş sıcaklığı, Ts, gözlendi, bu da ferromanyetikten antiferromanyetik bir faz geçişini gösterebilir. Histerezis döngüsü ölçümleri, 5 K'de 968 Oe'den 320 K'de yaklaşık 206 Oe'ye kadar olan koersiv alan değerleri göstererek manyetik spin yönelmesinde bir gevşeme olduğunu gösterdi. 5 T manyetik alan altında doyum mıknatıslanması (Ms) değerleri 15.2 emu/g olarak kaydedildi ve 5 K'de kalıcı mıknatıslanma (Mr), domine ferromanyetik özellikleri gösterirken Mr/Ms oranı yumuşak manyetik davranışı gösterdi. Manyetik duyarlılık analizi, yaklaşık 25 K'de bir pik gösterdi ve Curie-Weiss yasası -9.58°'lik tahmini bir θ açısı sağlayarak antiferromanyetik etkileşimleri düşündürdü.

Project Number

FBA-2021-13479

References

  • Zhang, H.-M., Wang, J.-J., Meng, Y., Sun, J., Recent advances in amorphous metal phosphide electrocatalysts for hydrogen evolution reaction, International Journal of Hydrogen Energy, 47(85), 36084-36097, 2022.
  • Kim, J.S., Kim, B., Kim, H., Kang, K., Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, 8(11), 1702774, 2018.
  • Litvinov, D., Chunseng, E., Parekh, V., Smith, D., Rantschler, J., Zhang, S., Donner, W., Lee, T.R., Ruchhoeft, P., Weller, D., Khizroev, S., Design and fabrication of high anisotropy nanoscale bit-patterned magnetic recording medium for data storage applications, ECS Transactions, 3(25), 249-258, 2019.
  • Liu, Y., Li, D., Sun, S., Pt-Based composite nanoparticles for magnetic, catalytic, and biomedical applications, Journal of Materials Chemistry, 21(34), 12579-12587, 2011.
  • Koutsopoulos, S., Barfod, R., Eriksen, K.M., Fehrmann, R., Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon, Journal of Alloys and Compounds, 725, 1210-1216, 2017.
  • Shokuhfar, A., Afghahi, S.S.S., Size controlled synthesis of FeCo alloy nanoparticles and study of the particle size and distribution effects on magnetic properties, Advances in Materials Science and Engineering, 2014, 1-10, 2014.
  • Liu, X.G., Geng, D.Y., Ma, S., Meng, H., Tong, M., Kang, D.J., Zhang, Z.D., Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules, Journal of Applied Physics, 104(6), 064319, 2008.
  • Park, J.-H., Woo, S., Lee, J., Jung, H.Y., Ro, J.C., Park, C., Lim, B., Suh, S.-J., Facile modified polyol synthesis of FeCo nanoparticles with oxyhydroxide surface layer as efficient oxygen evolution reaction electrocatalysts, International Journal of Hydrogen Energy, 46(29), 15398-15409, 2021.
  • Larcher, D., Patrice, R., Preparation of metallic powders and alloys in polyol media: a thermodynamic approach, Journal of Solid State Chemistry, 154(2), 405-411, 2000.
  • Park, J.-H., Ro, J.C., Suh, S.-J., FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution, Applied Surface Science, 589, 153041, 2022.
  • Zamanpour, M., Chen, Y., Hu, B., Carroll, K., Huba, Z.J., Carpenter, E.E., Lewis, L.H., Harris, V.G., Large-scale synthesis of high moment feco nanoparticles using modified polyol synthesis, Journal of Applied Physics, 111(7), 2012.
  • Rafique, M.Y., Pan, L., Zubair Iqbal, M., Javed, Q.-u.-a., Qiu, H., Rafi ud, d., Farooq, M.H., Guo, Z., 3-D flower like FeCo alloy nanostructures assembled with nanotriangular prism: facile synthesis, magnetic properties, and effect of NaOH on its formation, Journal of Alloys and Compounds, 550, 423-430, 2013.
  • Yang, F.J., Yao, J., Min, J.J., Li, J.H., Chen, X.Q., Synthesis of high saturation magnetization FeCo nanoparticles by polyol reduction method, Chemical Physics Letters, 648, 143-146, 2016.
  • Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., Peron, J., Piquemal, J.Y., Sicard, L., Viau, G., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, Shapes And Compositions, Chemical Society Reviews, 47(14), 5187-5233, 2018.
  • Poudyal, N., Rong, C.-b., Liu, J.P., Morphological and magnetic characterization of Fe, Co, and FeCo nanoplates and nanoparticles prepared by surfactants-assisted ball milling, Journal of Applied Physics, 109, 07B526, 2011.
  • Hiyama, H., Kodama, D., Matsumoto, T., Shinoda, K., Kasuya, R., Balachandran, J., Synthesis and magnetic properties of platelet Fe–Co particles, Journal of Applied Physics, 107(9), 2010.
  • Zehani, K., Bez, R., Moscovici, J., Mazaleyrat, F., Mliki, N., Bessais, L., High magnetic moment of FeCo nanoparticles produced in polyol medium, IEEE Transactions on Magnetics, 50(4), 1-5, 2014.
  • Suman, S., Chahal, S., Kumar, A., Kumar, P., Zn Doped α-Fe2O3: An efficient material for UV driven photocatalysis and electrical conductivity, 10(4), 273, 2020.
  • Farahmandjou, M., Honarbakhsh, S., Behrouzinia, S., FeCo nanorods preparation using new chemical synthesis, Journal of Superconductivity and Novel Magnetism, 31(12), 4147- 4152, 2018.
  • Hossain, M.A., Synthesis of carbon nanoparticles from kerosene and their characterization by SEM⁄EDX, XRD and FTIR, American Journal of Nanoscience and Nanotechnology, 1(2), 2013.
  • Zhang, M., Lin, Y., Mullen, T.J., Lin, W.-f., Sun, L.-D., Yan, C.-H., Patten, T.E., Wang, D., Liu, G.-y., Improving Hematite’s solar water splitting efficiency by incorporating Rare-Earth upconversion nanomaterials, The Journal of Physical Chemistry Letters, 3(21), 3188- 3192, 2012.
  • Cappellari, P.S., Baena-Moncada, A.M., Coneo-Rodríguez, R., Moreno, M.S., Barbero, C.A., Planes, G.A., Catalytic enhancement of formic acid electro-oxidation through surface modifications with gold on supported Pt nanoparticles, International Journal of Hydrogen Energy, 44(3), 1967-1972, 2019.
  • Puratchi Mani, M., Ponnarasi, K., Rajendran, A., Venkatachalam, V., Thamizharasan, K., Jothibas, M., Electrochemical behavior of an advanced FeCo2O4 electrode for supercapacitor applications, Journal of Electronic Materials, 49(10), 5964-5969, 2020.
  • Gao, F., Zhang, Y., Wu, Z., You, H., Du, Y., Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis, Coordination Chemistry Reviews, 436, 213825, 2021.
  • Meierhofer, F., Fritsching, U., Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics, Energy & Fuels, 35(7), 5495-5537, 2021.
  • Yoo, H., Oh, K., Lee, Y.R., Row, K.H., Lee, G., Choi, J., Simultaneous co-doping of RuO2 And IrO2 into Anodic TiO2 Nanotubes: A binary catalyst for electrochemical water splitting, International Journal of Hydrogen Energy, 42(10), 6657-6664, 2017.
  • Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, Journal of the American Chemical Society, 126(1), 273-279, 2004.
  • Wesselinowa, J.M., Apostolova, I., Size, Anisotropy and doping effects on the coercive field of ferromagnetic nanoparticles, Journal of Physics: Condensed Matter, 19(40), 406235, 2007.
  • Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., Room- temperature coercivity enhancement in mechanically alloyed antiferromagnetic-ferromagnetic powders, Applied Physics Letters, 75(20), 3177-3179, 1999.
  • Karipoth, P., Thirumurugan, A., Velaga, S., Greneche, J.-M., Justin Joseyphus, R., Magnetic properties of FeCo alloy nanoparticles synthesized through instant chemical reduction, Journal of Applied Physics, 120(12), 2016.
  • Kemp, S.J., Ferguson, R.M., Khandhar, A.P., Krishnan, K.M., Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization, RSC Advances, 6(81), 77452-77464, 2016.
  • Kurniawan, M., Perrin, A., Xu, P., Keylin, V., McHenry, M., Curie temperature engineering in high entropy alloys for magnetocaloric applications, IEEE Magnetics Letters, 7, 1-5, 2016.
  • Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P., Static and dynamic magnetic properties of spherical magnetite nanoparticles, Journal of Applied Physics, 94(5), 3520-3528, 2003.
  • Stipe, B.C., Rezaei, M.A., Ho, W., Gao, S., Persson, M., Lundqvist, B.I., Single- molecule dissociation by tunneling electrons, Physical Review Letters, 78(23), 4410-4413, 1997.
There are 34 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Physics
Authors

Emre Can Tayfun 0009-0007-9343-7349

Kaan Erman 0009-0004-7541-8820

Doğan Kaya 0000-0002-6313-7501

Faruk Karadağ 0000-0001-7862-9085

Ahmet Ekicibil 0000-0003-3071-0444

Project Number FBA-2021-13479
Publication Date December 31, 2023
Submission Date August 7, 2023
Acceptance Date October 31, 2023
Published in Issue Year 2023

Cite

APA Tayfun, E. C., Erman, K., Kaya, D., Karadağ, F., et al. (2023). Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process. Adıyaman University Journal of Science, 13(1&2), 74-88. https://doi.org/10.37094/adyujsci.1338847
AMA Tayfun EC, Erman K, Kaya D, Karadağ F, Ekicibil A. Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process. ADYU J SCI. December 2023;13(1&2):74-88. doi:10.37094/adyujsci.1338847
Chicago Tayfun, Emre Can, Kaan Erman, Doğan Kaya, Faruk Karadağ, and Ahmet Ekicibil. “Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process”. Adıyaman University Journal of Science 13, no. 1&2 (December 2023): 74-88. https://doi.org/10.37094/adyujsci.1338847.
EndNote Tayfun EC, Erman K, Kaya D, Karadağ F, Ekicibil A (December 1, 2023) Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process. Adıyaman University Journal of Science 13 1&2 74–88.
IEEE E. C. Tayfun, K. Erman, D. Kaya, F. Karadağ, and A. Ekicibil, “Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process”, ADYU J SCI, vol. 13, no. 1 & 2, pp. 74–88, 2023, doi: 10.37094/adyujsci.1338847.
ISNAD Tayfun, Emre Can et al. “Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process”. Adıyaman University Journal of Science 13/1 & 2 (December 2023), 74-88. https://doi.org/10.37094/adyujsci.1338847.
JAMA Tayfun EC, Erman K, Kaya D, Karadağ F, Ekicibil A. Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process. ADYU J SCI. 2023;13:74–88.
MLA Tayfun, Emre Can et al. “Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process”. Adıyaman University Journal of Science, vol. 13, no. 1&2, 2023, pp. 74-88, doi:10.37094/adyujsci.1338847.
Vancouver Tayfun EC, Erman K, Kaya D, Karadağ F, Ekicibil A. Structural, Magnetic and Catalytic Properties of FeCo Nanoparticles Synthesized by Polyol Process. ADYU J SCI. 2023;13(1&2):74-88.

...