Research Article
BibTex RIS Cite

Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures

Year 2024, , 78 - 89, 31.12.2024
https://doi.org/10.37094/adyujsci.1564392

Abstract

This study investigates synthesis and characterization of graphene oxide (GO) undoped and doped chromium-titanium oxide structures, along with their thermal conductivity properties in detail. The importance of low or high thermal conductivity varies depending on the intended application, and it is known that thermal conductivity, which determines which determines a material's ability to conduct heat, plays a crucial role in energy, electronics, and thermoelectric applications. Materials with low thermal conductivity are widely used in various industrial fields due to their effective heat insulation capabilities. For experimental studies, GO-undoped(T1), 1%-GO-doped(T2), and 3%-GO-doped(T3) samples were produced via the sol-gel method, followed by calcination, pelletization, and sintering processes. Characterization of these pellets was performed using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform-Infrared Spectroscopy (FTIR). Thermal conductivity was measured using Physical Properties Measurement System (PPMS). No structural or peak changes were detected in the XRD and FTIR results, but differences in peak intensities were observed. SEM images revealed reductions in structural dimensions with GO doping, which corresponded to changes in thermal conductivity data. The thermal conductivity values of the T1, T2, and T3 samples were measured as 6.49, 3.45, and 1.50 W/K·m, respectively. These findings indicate that GO-doping reduces thermal conductivity and that differences in the material structure are significant. Additionally, it was observed that reducing the structure to the nanoscale also led to a decrease in thermal conductivity. These materials could play an important role in developing next-generation material designs.

References

  • [1] Tritt, T.M., Thermal conductivity: Theory, properties, and applications: Springer Science & Business Media, 2005.
  • [2] Eivari, H.A., Sohbatzadeh, Z., Mele, P., Assadi, M.H.N., Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications, Materials Today Energy, 21, 100744, 2021.
  • [3] Binici, H., Aksogan, O., Demirhan, C., Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials, Sustainable Cities and Society, 20, 17-26, 2016.
  • [4] Tsilingiris, P.T., Heat transfer analysis of low thermal conductivity solar energy absorbers, Applied Thermal Engineering, 20, 1297-1314, 2000.
  • [5] Chavan, S.V., Sastry, P.U.M., Tyagi, A.K., Combustion synthesis of nanocrystalline Nd-doped ceria and Nd2O3 and their fractal behavior as studied by small angle X-ray scattering, Journal of Alloys and Compounds, 456, 51–56, 2008.
  • [6] Gleiter, H., Nanocrystalline solids, Journal of Applied Crystallography, 24, 79-90, 1991.
  • [7] Weller, H., Colloidal semiconductor q-particles-chemistry in the transition region between solid-state and molecules, Angewandte Chemie International Edition in English, 32, 41–53, 1993.
  • [8] Narayanamurti, V., Phonon optics and phonon propagation in semiconductors, Science, 213, 717-723, 1981.
  • [9] Maldovan, M., Phonon wave interference and thermal bandgap materials, Nature Materials, 14, 667-674, 2015.
  • [10] Xie, G., Ding, D., Zhang, G., Phonon coherence and its effect on thermal conductivity of nanostructures, Advances in Physics: X, 3, 720-755, 2018.
  • [11] Liu, G., Liu, Z., Wang, L., Zhang, K., Xie, X., A combined chrome oxide and titanium oxide based electron-transport layer for high-performance perovskite solar cells, Chemical Physics Letters, 771, 138496, 2021.
  • [12] Pei, Z., Zheng, X., Li, Z., Progress on synthesis and applications of Cr2O3 nanoparticles, Journal of Nanoscience and Nanotechnology, 16, 4655-4671, 2016.
  • [13] He, Q., Hao, Q., Chen, G., Poudel, B., Wang, X., Wang, D., Ren, Z., Thermoelectric property studies on bulk TiOx with x from 1 to 2, Applied Physics Letters, 91, 052505, 2007.
  • [14] Pei, Q.X., Sha, Z.D., Zhang, Y.W., A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon, 49, 4752-4759, 2011.
  • [15] Chen, J., Li, L., Thermal conductivity of graphene oxide: a molecular dynamics study, JETP Letters, 112, 117-121, 2020.
  • [16] Chen, J., Li, L., Thermal conductivity of graphene oxide: A molecular dynamics study, JETP Letters, 112, 117-121, 2020.
  • [17] Sevinçli, H., Sevik, C., Çağın, T., Cuniberti, G., A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons, Scientific Reports, 3, 1228, 2013.
  • [18] Huang, J., Yan, P., Liu, Y., Xing, J., Gu, H., Fan, Y., Jiang, W., Simultaneously breaking the double Schottky barrier and phonon transport in SrTiO3-based thermoelectric ceramics via two-step reduction, ACS Applied Materials & Interfaces, 12, 52721-52730, 2020.
  • [19] Liu, X., Li, S., Yu, J., Zhu, Y., Lin, K., Wang, B., Rongsheng, C., Dursun, E., David L., Ian, A.K., Michael J.R., Freer, R., Enhancing the thermoelectric properties of TiO2-based ceramics through addition of carbon black and graphene oxide, Carbon, 216, 118509, 2024.
  • [20] Koçyiğit, S., Aytimur, A., & Uslu, I., Graphene-doped Ca0.9Er0.1Mn1.5Oα thermoelectric nanocomposite materials: Temperature-dependent thermal and Seebeck properties, Ceramics International, 46, 6377-6382, 2020.
  • [21] Yue, H.R., Xue, X.X., Zhang, W.J., Diffusion Characteristics of Intermediate in Cr2O3/CaO System and Its Formation Mechanism, Metallurgical and Materials Transactions B, 52, 3477-3489, 2021.
  • [22] Filiberto, M., Daniele, B., Franco, B., Antonio, S., Adriano, P., Giovanna, I., Raimondo, Q., Histological and histomorphometric comparison of innovative dental implants laser obtained: Animal pilot study, Materials, 14, 1830, 2021.
  • [23] Goncalves, G., Marques, P.A., Granadeiro, C.M., Nogueira, H.I., Singh, M.K., Gracio, J., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth, Chemistry of Materials, 21, 4796-4802, 2009.
  • [24] Hallam, H.E., Infrared and Raman spectra of inorganic compounds, Royal Institute of Chemistry, Reviews, 1, 39-61, 1968.
  • [25] Scarano, D., Zecchina, A., Bordiga, S., Ricchiardi, G., Spoto, G., Interaction of CO with α-Cr2O3 surface: A FTIR and HRTEM study, Chemical Physics, 177, 547-560, 1993.
  • [26] Nakamura, R., Nakato, Y., Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements, Journal of the American Chemical Society, 126, 1290-1298, 2004.
  • [27] Kumar, P.M., Badrinarayanan, S., Sastry, M., Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin solid films, 358, 122-130, 2000.
  • [28] Mahanta, N.K., Abramson, A.R., Thermal conductivity of graphene and graphene oxide nanoplatelets, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1-6, 2012.
  • [29] Okhay, O., Tkach, A., Impact of graphene or reduced graphene oxide on performance of thermoelectric composites, Journal of Carbon Research, 7, 37, 2021.

Grafen Oksit Katkılı Krom-Titanyum Oksit Yapılarının Sentezi, Karakterizasyonu Ve Termal İletkenlik Özellikleri

Year 2024, , 78 - 89, 31.12.2024
https://doi.org/10.37094/adyujsci.1564392

Abstract

Bu çalışmada, grafen oksit katkılı ve katkısız krom titanyum oksit yapılarının sentez ve karakterizasyonları ile birlikte termal iletkenlik özellikleri detaylı bir şekilde incelenmiştir. Termal iletkenlik değerlerinin düşük veya yüksek olması hedeflenen malzeme türüne göre önem arz etmekte ve malzemelerin ısıyı iletme yeteneğini belirleyen termal iletkenliğin enerji, elektronik ve termoelektrik uygulamalarda önemli rol oynadığı bilinmektedir. Düşük termal iletkenliğe sahip malzemeler, ısıyı etkin bir şekilde izole edebilme yetenekleri sayesinde çeşitli endüstriyel alanlarda yaygın olarak kullanılmaktadır. Deneysel çalışmalar sonucunda, GO- undoped (T1), 1% GO-doped (T2) ve 3% GO-doped (T3) örnekleri sol-jel yöntemi ile üretilmiş olup örneklerin ilk olarak kalsinasyonu ardından peletleme sonrası sinterleme işlemi yapılmıştır. Bu sinterlenen peletlerin karakterizasyonu X-ışınları Kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM) ve Fourier Dönüşümlü Kızılötesi Spektroskopi (FTIR) ile yapılmıştır. Termal iletkenlik ölçümleri ise Fiziksel Özellikler Ölçüm Sistemi (PPMS) ile yapılmıştır. Karakterizasyonlarda XRD ve FTIR sonuçlarında herhangi yapı ve pik değişikliği saptanmamış, ancak pik şiddetlerinde farklılıklar görülmüştür. SEM görüntülerinde GO katkılaması ile yapı boyutlarında azalmalar meydana geldiği anlaşılmış ve termal iletkenlik verilerindeki değişimle bu durum açıklanmıştır. T1, T2, ve T3 örneklerinin termal iletkenlik değerleri sırasıyla 6.49, 3.45 ve 1.50 W/K·m olarak ölçülmüştür. Bu bulgular, grafen oksit katkısının termal iletkenliği azalttığını ve malzeme yapısındaki değişikliklerin bu süreçte etkili olduğunu göstermektedir. Ayrıca yapının nanoboyuta indirgenmesiyle termal iletkenlik verilerinin de düştüğü gözlemlenmiştir. Enerji verimliliğini artırma potansiyeli açısından bu malzemelerin yeni nesil malzeme tasarımlarının geliştirilmesinde önemli rol oynayabilecektir.

References

  • [1] Tritt, T.M., Thermal conductivity: Theory, properties, and applications: Springer Science & Business Media, 2005.
  • [2] Eivari, H.A., Sohbatzadeh, Z., Mele, P., Assadi, M.H.N., Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications, Materials Today Energy, 21, 100744, 2021.
  • [3] Binici, H., Aksogan, O., Demirhan, C., Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials, Sustainable Cities and Society, 20, 17-26, 2016.
  • [4] Tsilingiris, P.T., Heat transfer analysis of low thermal conductivity solar energy absorbers, Applied Thermal Engineering, 20, 1297-1314, 2000.
  • [5] Chavan, S.V., Sastry, P.U.M., Tyagi, A.K., Combustion synthesis of nanocrystalline Nd-doped ceria and Nd2O3 and their fractal behavior as studied by small angle X-ray scattering, Journal of Alloys and Compounds, 456, 51–56, 2008.
  • [6] Gleiter, H., Nanocrystalline solids, Journal of Applied Crystallography, 24, 79-90, 1991.
  • [7] Weller, H., Colloidal semiconductor q-particles-chemistry in the transition region between solid-state and molecules, Angewandte Chemie International Edition in English, 32, 41–53, 1993.
  • [8] Narayanamurti, V., Phonon optics and phonon propagation in semiconductors, Science, 213, 717-723, 1981.
  • [9] Maldovan, M., Phonon wave interference and thermal bandgap materials, Nature Materials, 14, 667-674, 2015.
  • [10] Xie, G., Ding, D., Zhang, G., Phonon coherence and its effect on thermal conductivity of nanostructures, Advances in Physics: X, 3, 720-755, 2018.
  • [11] Liu, G., Liu, Z., Wang, L., Zhang, K., Xie, X., A combined chrome oxide and titanium oxide based electron-transport layer for high-performance perovskite solar cells, Chemical Physics Letters, 771, 138496, 2021.
  • [12] Pei, Z., Zheng, X., Li, Z., Progress on synthesis and applications of Cr2O3 nanoparticles, Journal of Nanoscience and Nanotechnology, 16, 4655-4671, 2016.
  • [13] He, Q., Hao, Q., Chen, G., Poudel, B., Wang, X., Wang, D., Ren, Z., Thermoelectric property studies on bulk TiOx with x from 1 to 2, Applied Physics Letters, 91, 052505, 2007.
  • [14] Pei, Q.X., Sha, Z.D., Zhang, Y.W., A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon, 49, 4752-4759, 2011.
  • [15] Chen, J., Li, L., Thermal conductivity of graphene oxide: a molecular dynamics study, JETP Letters, 112, 117-121, 2020.
  • [16] Chen, J., Li, L., Thermal conductivity of graphene oxide: A molecular dynamics study, JETP Letters, 112, 117-121, 2020.
  • [17] Sevinçli, H., Sevik, C., Çağın, T., Cuniberti, G., A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons, Scientific Reports, 3, 1228, 2013.
  • [18] Huang, J., Yan, P., Liu, Y., Xing, J., Gu, H., Fan, Y., Jiang, W., Simultaneously breaking the double Schottky barrier and phonon transport in SrTiO3-based thermoelectric ceramics via two-step reduction, ACS Applied Materials & Interfaces, 12, 52721-52730, 2020.
  • [19] Liu, X., Li, S., Yu, J., Zhu, Y., Lin, K., Wang, B., Rongsheng, C., Dursun, E., David L., Ian, A.K., Michael J.R., Freer, R., Enhancing the thermoelectric properties of TiO2-based ceramics through addition of carbon black and graphene oxide, Carbon, 216, 118509, 2024.
  • [20] Koçyiğit, S., Aytimur, A., & Uslu, I., Graphene-doped Ca0.9Er0.1Mn1.5Oα thermoelectric nanocomposite materials: Temperature-dependent thermal and Seebeck properties, Ceramics International, 46, 6377-6382, 2020.
  • [21] Yue, H.R., Xue, X.X., Zhang, W.J., Diffusion Characteristics of Intermediate in Cr2O3/CaO System and Its Formation Mechanism, Metallurgical and Materials Transactions B, 52, 3477-3489, 2021.
  • [22] Filiberto, M., Daniele, B., Franco, B., Antonio, S., Adriano, P., Giovanna, I., Raimondo, Q., Histological and histomorphometric comparison of innovative dental implants laser obtained: Animal pilot study, Materials, 14, 1830, 2021.
  • [23] Goncalves, G., Marques, P.A., Granadeiro, C.M., Nogueira, H.I., Singh, M.K., Gracio, J., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth, Chemistry of Materials, 21, 4796-4802, 2009.
  • [24] Hallam, H.E., Infrared and Raman spectra of inorganic compounds, Royal Institute of Chemistry, Reviews, 1, 39-61, 1968.
  • [25] Scarano, D., Zecchina, A., Bordiga, S., Ricchiardi, G., Spoto, G., Interaction of CO with α-Cr2O3 surface: A FTIR and HRTEM study, Chemical Physics, 177, 547-560, 1993.
  • [26] Nakamura, R., Nakato, Y., Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements, Journal of the American Chemical Society, 126, 1290-1298, 2004.
  • [27] Kumar, P.M., Badrinarayanan, S., Sastry, M., Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin solid films, 358, 122-130, 2000.
  • [28] Mahanta, N.K., Abramson, A.R., Thermal conductivity of graphene and graphene oxide nanoplatelets, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1-6, 2012.
  • [29] Okhay, O., Tkach, A., Impact of graphene or reduced graphene oxide on performance of thermoelectric composites, Journal of Carbon Research, 7, 37, 2021.
There are 29 citations in total.

Details

Primary Language English
Subjects Organometallic Chemistry, Nanochemistry
Journal Section Chemistry
Authors

Serhat Koçyiğit 0000-0003-0172-6180

Publication Date December 31, 2024
Submission Date October 10, 2024
Acceptance Date November 28, 2024
Published in Issue Year 2024

Cite

APA Koçyiğit, S. (2024). Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures. Adıyaman University Journal of Science, 14(2), 78-89. https://doi.org/10.37094/adyujsci.1564392
AMA Koçyiğit S. Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures. ADYU J SCI. December 2024;14(2):78-89. doi:10.37094/adyujsci.1564392
Chicago Koçyiğit, Serhat. “Synthesis, Characterization, and Thermal Conductivity Properties of Graphene Oxide Doped Chromium-Titanium Oxide Structures”. Adıyaman University Journal of Science 14, no. 2 (December 2024): 78-89. https://doi.org/10.37094/adyujsci.1564392.
EndNote Koçyiğit S (December 1, 2024) Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures. Adıyaman University Journal of Science 14 2 78–89.
IEEE S. Koçyiğit, “Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures”, ADYU J SCI, vol. 14, no. 2, pp. 78–89, 2024, doi: 10.37094/adyujsci.1564392.
ISNAD Koçyiğit, Serhat. “Synthesis, Characterization, and Thermal Conductivity Properties of Graphene Oxide Doped Chromium-Titanium Oxide Structures”. Adıyaman University Journal of Science 14/2 (December 2024), 78-89. https://doi.org/10.37094/adyujsci.1564392.
JAMA Koçyiğit S. Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures. ADYU J SCI. 2024;14:78–89.
MLA Koçyiğit, Serhat. “Synthesis, Characterization, and Thermal Conductivity Properties of Graphene Oxide Doped Chromium-Titanium Oxide Structures”. Adıyaman University Journal of Science, vol. 14, no. 2, 2024, pp. 78-89, doi:10.37094/adyujsci.1564392.
Vancouver Koçyiğit S. Synthesis, characterization, and thermal conductivity properties of graphene oxide doped chromium-titanium oxide structures. ADYU J SCI. 2024;14(2):78-89.

...