Research Article
BibTex RIS Cite
Year 2020, , 218 - 225, 25.06.2020
https://doi.org/10.37094/adyujsci.546724

Abstract

References

  • [1] Hilger, S., Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD Thesis, 1989.
  • [2] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics 18, 1-2, 18-56, 1990.
  • [3] Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2(3-4), 1951.
  • [4] Schoenberg, I.J,.The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66(5), 361-775, 1959.
  • [5] Fridy, J.A., On statistical convergence, Analysis,5(4), 301-314, 1985.
  • [6] Seyyidoğlu, M.S., Tan, N.Ö,. A note on statistical convergence on time scale, Journal of Inequalities and Applications, 2012(1), 219, 2012.
  • [7] Altın, Y., Koyunbakan, H., Yılmaz, E., Uniform statistical convergence on time scales, Journal of Applied Mathematics, vol. 2014, 6 pages, 2014.
  • [8] Yılmaz, E., Altın, A., Koyunbakan, H., λ-Statistical convergence on time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 23, 69-78, 2016.
  • [9] Ceylan, T., Duman, O., Fundamental Properties of Statistical Convergence and Lacunary Statistical Convergence on Time Scales, Filomat, 31(14), 2017.

On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale

Year 2020, , 218 - 225, 25.06.2020
https://doi.org/10.37094/adyujsci.546724

Abstract

In this article, we define the concept of $\Delta$-Cauchy$, \Delta$-uniform convergence and $\Delta$-pointwise convergence of a family of functions $\{f_{j}\}_{j\in \mathbb{J}}$, where $\mathbb{J}$ is a time scale. We study the relationships between these notions. Moreover, we introduced sufficient conditions for interchangeability of $\Delta$-limitation with Riemann $\Delta$-integration or $\Delta$-differentiation. Also, we obtain the analogue of the well-known Dini's Theorem.

References

  • [1] Hilger, S., Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD Thesis, 1989.
  • [2] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics 18, 1-2, 18-56, 1990.
  • [3] Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2(3-4), 1951.
  • [4] Schoenberg, I.J,.The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66(5), 361-775, 1959.
  • [5] Fridy, J.A., On statistical convergence, Analysis,5(4), 301-314, 1985.
  • [6] Seyyidoğlu, M.S., Tan, N.Ö,. A note on statistical convergence on time scale, Journal of Inequalities and Applications, 2012(1), 219, 2012.
  • [7] Altın, Y., Koyunbakan, H., Yılmaz, E., Uniform statistical convergence on time scales, Journal of Applied Mathematics, vol. 2014, 6 pages, 2014.
  • [8] Yılmaz, E., Altın, A., Koyunbakan, H., λ-Statistical convergence on time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 23, 69-78, 2016.
  • [9] Ceylan, T., Duman, O., Fundamental Properties of Statistical Convergence and Lacunary Statistical Convergence on Time Scales, Filomat, 31(14), 2017.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mustafa Seyyit Seyyidoğlu 0000-0001-9129-1373

Ayşe Karadaş This is me

Publication Date June 25, 2020
Submission Date March 29, 2019
Acceptance Date March 3, 2020
Published in Issue Year 2020

Cite

APA Seyyidoğlu, M. S., & Karadaş, A. (2020). On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. Adıyaman University Journal of Science, 10(1), 218-225. https://doi.org/10.37094/adyujsci.546724
AMA Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. June 2020;10(1):218-225. doi:10.37094/adyujsci.546724
Chicago Seyyidoğlu, Mustafa Seyyit, and Ayşe Karadaş. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science 10, no. 1 (June 2020): 218-25. https://doi.org/10.37094/adyujsci.546724.
EndNote Seyyidoğlu MS, Karadaş A (June 1, 2020) On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. Adıyaman University Journal of Science 10 1 218–225.
IEEE M. S. Seyyidoğlu and A. Karadaş, “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”, ADYU J SCI, vol. 10, no. 1, pp. 218–225, 2020, doi: 10.37094/adyujsci.546724.
ISNAD Seyyidoğlu, Mustafa Seyyit - Karadaş, Ayşe. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science 10/1 (June 2020), 218-225. https://doi.org/10.37094/adyujsci.546724.
JAMA Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. 2020;10:218–225.
MLA Seyyidoğlu, Mustafa Seyyit and Ayşe Karadaş. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science, vol. 10, no. 1, 2020, pp. 218-25, doi:10.37094/adyujsci.546724.
Vancouver Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. 2020;10(1):218-25.

...