Research Article
BibTex RIS Cite

Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas

Year 2019, , 404 - 416, 30.12.2019
https://doi.org/10.37094/adyujsci.552323

Abstract

In this study, microwave imager design is aimed by using a series of microstrip patch antennas operating in the 2.46 GHz frequency band. The designed microwave imager has a 24-sided cylindrical shape and includes 5x1 microstrip patch antennas placed at 45˚ angles. The overall working principle of the microwave imager is based on the back reflection and transmission values between the transmitter and receiver antennas. The 40 microstrip patch antennas inside the microwave imager operate as both a receiver and a transmitter and the transmission values between each other (S21, S31, S41, S21 etc.) are capable of mapping the internal space in three dimensions with the required algorithm. The microstrip antennas in the designed structure have been chosen for their small volume, easy integration, versatility, low profile, and the most commonly used 2.46 GHz frequency is used as the operation band. The most important achievement of this study is to support medical imaging practices; the detection of cancerous areas such as breast cancer can be determined by the interaction between antennas and is the aim of this study. In addition, the developed microwave imager can also be used in concrete mapping and non-destructive imaging applications in the construction sector. Besides, the designed configuration has another advantage due to its low cost.

References

  • [1] Paulsen, K.D., Meaney, P.M., Nonactive antenna compensation for fixed-array microwave imaging-Part I: Model development, IEEE Transactions on Medical Imaging, 18(6), 496-507, 1999.
  • [2] Meaney, P.M., Paulsen, K.D., Chang, J.T., Fanning, M.W., Hartov, A., Nonactive antenna compensation for fixed-array microwave imaging: Part II-Imaging results, IEEE Transactions on Medical Imaging, 18(6), 508-518, 1999.
  • [3] Li, X., Hagness, S.C., A confocal microwave imaging algorithm for breast cancer detection, IEEE Microwave and Wireless Components Letters, 11(3), 130-132, 2001.
  • [4] Fear, E.C., Li, X., Hagness, S.C., Stuchly, M.A., Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions, IEEE Transactions on Biomedical Engineering, 49(8), 812-822, 2002.
  • [5] Fear, E.C., Sill, J., Stuchly, M.A., Experimental feasibility study of confocal microwave imaging for breast tumor detection, IEEE Transactions on Microwave Theory and Techniques, 51(3), 887-892, 2003.
  • [6] Xie, Y., Guo, B., Xu, L., Li, J., Stoica, P., Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Transactions on Biomedical Engineering, 53(8), 1647-1657, 2006.
  • [7] Nilavalan, R., Craddock, I.J., Preece, A., Leendertz, J., Benjamin, R., Wideband microstrip patch antenna design for breast cancer tumour detection, IET Microwaves, Antennas & Propagation, 1(2), 277-281, 2007.
  • [8] Chen, X., Liang, J., Wang, S., Wang, Z., Parini, C., Small ultra wideband antennas for medical imaging, Loughborough Antennas and Propagation Conference, Loughborough, UK, 28-31, 2008.
  • [9] Stang, J.P., Joines, W.T., Tapered microstrip patch antenna array for microwave breast imaging, IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 1313-1316, 2008.
  • [10] Klemm, M., Craddock, I.J., Preece, A., Leendertz, J., Benjamin, R., Evaluation of a hemi‐spherical wideband antenna array for breast cancer imaging, Radio Science, 43(6), 1-15, 2008.
  • [11] Yang, B., Yarovoy, A.G., Ligthart, L.P., UWB stacked patch antenna design for near-field imaging radar antenna array, 3rd European Conference on Antennas and Propagation, Berlin, Germany, 817-821, 2009.
  • [12] Amineh, R. K., Trehan, A., Nikolova, N.K., TEM horn antenna for ultra-wide band microwave breast imaging, Progress in Electromagnetics Research B, 13, 59-74, 2009.
  • [13] Bourqui, J., Okoniewski, M., Fear, E.C., Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging, IEEE Transactions on Antennas and Propagation, 58(7), 2318-2326, 2010.
  • [14] Al-Joumayly, M.A., Aguilar, S.M., Behdad, N., Hagness, S.C., Dual-band miniaturized patch antennas for microwave breast imaging, IEEE Antennas and Wireless Propagation Letters, 9, 268-271, 2010.
  • [15] Aguilar, S.M., Al-Joumayly, M.A., Burfeindt, M.J., Behdad, N., Hagness, S. C., Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array, IEEE transactions on antennas and propagation, 62(3), 1221-1231, 2014.
  • [16] Biswas, B., Ghatak, R., Poddar, D.R., A fern fractal leaf inspired wideband antipodal vivaldi antenna for microwave imaging system, IEEE Transactions on Antennas and Propagation, 65(11), 6126-6129, 2017.
  • [17] Çelik, A.R., Kurt, M. B., Helhel, S., Mikrodalga görüntüleme uygulamaları için bir düzlemsel dikdörtgen monopol anten tasarımı ve optimizasyonu, DÜMF Mühendislik Dergisi, 9(1), 1-12, 2018.
  • [18] Wang, F., Arslan, T., A thin-film-based wearable antenna array for breast microwave imaging and diagnosis, First IEEE MTT-S International Microwave Bio Conference (IMBIOC), Gothenburg, Sweden, 1-4, 2017.
  • [19] Rokunuzzaman, M., Samsuzzaman, M., Islam, M.T., Unidirectional wideband 3-D antenna for human head-imaging application, IEEE Antennas and Wireless Propagation Letters, 16, 169-172, 2017.
  • [20] Zamani, A., Rezaeieh, S.A., Bialkowski, K.S., Abbosh, A.M., Boundary estimation of imaged object in microwave medical imaging using antenna resonant frequency shift, IEEE Transactions on Antennas and Propagation, 66(2), 927-936, 2018.
  • [21] Alkurt, F.O., Altintas, O., Atci, A., Bakir, M., Unal, E., Akgol, O., Delihacioglu, K., Karaaslan, M., Sabah, C., Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz, Optical Engineering, 57(11), 113102, 2018.
  • [22] Zhou, T., Zhu, A., Shen, Y., Li, H., Li, C., Hangfu, J., Single frequency microwave imaging based on compressed sensing, IEEE Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 133-135, 2018.

2.46 GHz’te Mikroşerit Yama Antenlerle Mikrodalga Görüntüleyici Tasarımı

Year 2019, , 404 - 416, 30.12.2019
https://doi.org/10.37094/adyujsci.552323

Abstract

Bu çalışmada 2.46 GHz frekans bandında çalışan mikroşerit yama antenlerin bir serisi kullanılarak mikrodalga görüntüleyici tasarımı amaçlanmıştır. Tasarlanan mikrodalga görüntüleyici 24 kenarlı silindirik şekle sahip ve 45o açılarla yerleştirilmiş 5x1 mikro şerit yama antenler içermektedir. Mikrodalga görüntüleyicinin genel çalışma prensibi, verici ve alıcı antenleri arasındaki geri yansıma ve iletim değerlerine dayanmaktadır. Mikrodalga görüntüleyicinin içindeki 40 mikro şerit yama anteni hem alıcı hem de verici olarak çalışır ve birbirleri arasındaki iletim değerleri (S21, S31, S41, S21vb.) iç alanı gerekli algoritma ile üç boyutlu olarak haritalayabilirler. Tasarlanan yapıdaki mikro şerit antenler küçük hacimleri, kolay entegrasyonu, çok yönlülükleri, düşük profilli olmaları için seçilmiş ve en yaygın kullanılan 2.46 GHz frekansı çalışma bandı olarak kullanılmıştır. Bu çalışmanın en önemli yanı tıbbi görüntüleme uygulamalarını desteklemektir; meme kanseri gibi kanser vakalarında kanserli alanların tespiti antenler arasındaki etkileşimle belirlenebilir ve bu çalışmanın amacıdır. Ayrıca, geliştirilen mikrodalga görüntüleme cihazı inşaat sektöründe beton haritalama ve tahribatsız görüntüleme uygulamalarında da kullanılabilir. Bunlardan başka, tasarlanan konfigürasyonun düşük maliyetli olması başka bir avantajıdır.

References

  • [1] Paulsen, K.D., Meaney, P.M., Nonactive antenna compensation for fixed-array microwave imaging-Part I: Model development, IEEE Transactions on Medical Imaging, 18(6), 496-507, 1999.
  • [2] Meaney, P.M., Paulsen, K.D., Chang, J.T., Fanning, M.W., Hartov, A., Nonactive antenna compensation for fixed-array microwave imaging: Part II-Imaging results, IEEE Transactions on Medical Imaging, 18(6), 508-518, 1999.
  • [3] Li, X., Hagness, S.C., A confocal microwave imaging algorithm for breast cancer detection, IEEE Microwave and Wireless Components Letters, 11(3), 130-132, 2001.
  • [4] Fear, E.C., Li, X., Hagness, S.C., Stuchly, M.A., Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions, IEEE Transactions on Biomedical Engineering, 49(8), 812-822, 2002.
  • [5] Fear, E.C., Sill, J., Stuchly, M.A., Experimental feasibility study of confocal microwave imaging for breast tumor detection, IEEE Transactions on Microwave Theory and Techniques, 51(3), 887-892, 2003.
  • [6] Xie, Y., Guo, B., Xu, L., Li, J., Stoica, P., Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Transactions on Biomedical Engineering, 53(8), 1647-1657, 2006.
  • [7] Nilavalan, R., Craddock, I.J., Preece, A., Leendertz, J., Benjamin, R., Wideband microstrip patch antenna design for breast cancer tumour detection, IET Microwaves, Antennas & Propagation, 1(2), 277-281, 2007.
  • [8] Chen, X., Liang, J., Wang, S., Wang, Z., Parini, C., Small ultra wideband antennas for medical imaging, Loughborough Antennas and Propagation Conference, Loughborough, UK, 28-31, 2008.
  • [9] Stang, J.P., Joines, W.T., Tapered microstrip patch antenna array for microwave breast imaging, IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 1313-1316, 2008.
  • [10] Klemm, M., Craddock, I.J., Preece, A., Leendertz, J., Benjamin, R., Evaluation of a hemi‐spherical wideband antenna array for breast cancer imaging, Radio Science, 43(6), 1-15, 2008.
  • [11] Yang, B., Yarovoy, A.G., Ligthart, L.P., UWB stacked patch antenna design for near-field imaging radar antenna array, 3rd European Conference on Antennas and Propagation, Berlin, Germany, 817-821, 2009.
  • [12] Amineh, R. K., Trehan, A., Nikolova, N.K., TEM horn antenna for ultra-wide band microwave breast imaging, Progress in Electromagnetics Research B, 13, 59-74, 2009.
  • [13] Bourqui, J., Okoniewski, M., Fear, E.C., Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging, IEEE Transactions on Antennas and Propagation, 58(7), 2318-2326, 2010.
  • [14] Al-Joumayly, M.A., Aguilar, S.M., Behdad, N., Hagness, S.C., Dual-band miniaturized patch antennas for microwave breast imaging, IEEE Antennas and Wireless Propagation Letters, 9, 268-271, 2010.
  • [15] Aguilar, S.M., Al-Joumayly, M.A., Burfeindt, M.J., Behdad, N., Hagness, S. C., Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array, IEEE transactions on antennas and propagation, 62(3), 1221-1231, 2014.
  • [16] Biswas, B., Ghatak, R., Poddar, D.R., A fern fractal leaf inspired wideband antipodal vivaldi antenna for microwave imaging system, IEEE Transactions on Antennas and Propagation, 65(11), 6126-6129, 2017.
  • [17] Çelik, A.R., Kurt, M. B., Helhel, S., Mikrodalga görüntüleme uygulamaları için bir düzlemsel dikdörtgen monopol anten tasarımı ve optimizasyonu, DÜMF Mühendislik Dergisi, 9(1), 1-12, 2018.
  • [18] Wang, F., Arslan, T., A thin-film-based wearable antenna array for breast microwave imaging and diagnosis, First IEEE MTT-S International Microwave Bio Conference (IMBIOC), Gothenburg, Sweden, 1-4, 2017.
  • [19] Rokunuzzaman, M., Samsuzzaman, M., Islam, M.T., Unidirectional wideband 3-D antenna for human head-imaging application, IEEE Antennas and Wireless Propagation Letters, 16, 169-172, 2017.
  • [20] Zamani, A., Rezaeieh, S.A., Bialkowski, K.S., Abbosh, A.M., Boundary estimation of imaged object in microwave medical imaging using antenna resonant frequency shift, IEEE Transactions on Antennas and Propagation, 66(2), 927-936, 2018.
  • [21] Alkurt, F.O., Altintas, O., Atci, A., Bakir, M., Unal, E., Akgol, O., Delihacioglu, K., Karaaslan, M., Sabah, C., Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz, Optical Engineering, 57(11), 113102, 2018.
  • [22] Zhou, T., Zhu, A., Shen, Y., Li, H., Li, C., Hangfu, J., Single frequency microwave imaging based on compressed sensing, IEEE Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 133-135, 2018.
There are 22 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Physics
Authors

Fatih Ozkan Alkurt

Muharrem Karaaslan

Emin Unal

Faruk Karadağ 0000-0001-7862-9085

Publication Date December 30, 2019
Submission Date April 11, 2019
Acceptance Date December 19, 2019
Published in Issue Year 2019

Cite

APA Alkurt, F. O., Karaaslan, M., Unal, E., Karadağ, F. (2019). Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas. Adıyaman University Journal of Science, 9(2), 404-416. https://doi.org/10.37094/adyujsci.552323
AMA Alkurt FO, Karaaslan M, Unal E, Karadağ F. Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas. ADYU J SCI. December 2019;9(2):404-416. doi:10.37094/adyujsci.552323
Chicago Alkurt, Fatih Ozkan, Muharrem Karaaslan, Emin Unal, and Faruk Karadağ. “Microwave Imager Design With 2.46 GHz Microstrip Patch Antennas”. Adıyaman University Journal of Science 9, no. 2 (December 2019): 404-16. https://doi.org/10.37094/adyujsci.552323.
EndNote Alkurt FO, Karaaslan M, Unal E, Karadağ F (December 1, 2019) Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas. Adıyaman University Journal of Science 9 2 404–416.
IEEE F. O. Alkurt, M. Karaaslan, E. Unal, and F. Karadağ, “Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas”, ADYU J SCI, vol. 9, no. 2, pp. 404–416, 2019, doi: 10.37094/adyujsci.552323.
ISNAD Alkurt, Fatih Ozkan et al. “Microwave Imager Design With 2.46 GHz Microstrip Patch Antennas”. Adıyaman University Journal of Science 9/2 (December 2019), 404-416. https://doi.org/10.37094/adyujsci.552323.
JAMA Alkurt FO, Karaaslan M, Unal E, Karadağ F. Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas. ADYU J SCI. 2019;9:404–416.
MLA Alkurt, Fatih Ozkan et al. “Microwave Imager Design With 2.46 GHz Microstrip Patch Antennas”. Adıyaman University Journal of Science, vol. 9, no. 2, 2019, pp. 404-16, doi:10.37094/adyujsci.552323.
Vancouver Alkurt FO, Karaaslan M, Unal E, Karadağ F. Microwave Imager Design with 2.46 GHz Microstrip Patch Antennas. ADYU J SCI. 2019;9(2):404-16.

...