Research Article
BibTex RIS Cite

Yarıasal Halkaların Lie İdealleri Üzerinde Bazı Değişmelilik Teoremleri

Year 2020, , 548 - 556, 30.12.2020
https://doi.org/10.37094/adyujsci.638265

Abstract

Bu çalışmada, 2 −torsion free bir 𝑅 yarıasal halkasının kare kapalı merkezi olmayan bir 𝑈 Lie idealinin, halkanın sıfırdan farklı bir idealini kapsadığı gösterilecektir. Ayrıca bu sonuçla, yarı asal halkaların Lie ideallerinin çarpımsal genelleştirilmiş türevleri üzerine bazı teoremler genelleştirilecektir.

References

  • [1] Bresar, M., On the distance of the composition of two derivations to be the generalized derivations, The Glasgow Mathematical Journal, 33, 89-93, 1991.
  • [2] Posner, E.C., Derivations in Prime Rings, Proceedings of the American Mathematical Society, 8, 1093-1100, 1957.
  • [3] Herstein, I.N., Topics in ring theory, University of Chicago Press, 1969.
  • [4] Martindale, W.S., When are multiplicative maps additive, Proceedings of the American Mathematical Society, 21, 695-698, 1969.
  • [5] Daif, M.N., When is a multiplicative derivation additive, International Journal of Mathematics and Mathematical Sciences, 14(3), 615-618, 1991.
  • [6] Goldman, H., Semrl, P ., Multiplicative derivations on C(X), Monatshefte für Mathematik, 121(3), 189-197, 1969.
  • [7] Daif, M. N., Tammam El-Sayiad, M.S., Multiplicative generalized derivations which are additive, East-West Journal of Mathematics, 9, 31-37, 1997.
  • [8] Dhara, B., Ali, S., On multiplicative (generalized)-derivation in prime and semiprime rings, Aequationes mathematicae, 86, 65-79, 2013.
  • [9] Eremita, D., Ilisevic, D., On additivity of centralizers, Bulletin of the Australian Mathematical Society, 74, 177-184, 2006.
  • [10] Ali, A., Dhara, B., Ali, F., Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe Journal of Mathematics and Statistics, 44, 1293-1306, 2015.
  • [11] Ali, S., Dhara, B., Dar, N.A., Khan, A.N., On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings, Beiträge zur Algebra und Geometrie, 56, 325-337, 2015.
  • [12] Koç, E., Gölbaşı, Ö., Multiplicative generalized derivations on Lie ideals in semiprime rings, Palastine Journal of Mathematics, 6, 219-227, 2017.
  • [13] Gölbaşı, Ö., Multiplicative generalized derivations on ideals in semiprime rings, Mathematica Slovaca, 66, 1285-1296, 2016.
  • [14] Huang, S., Derivations on Lie ideals of semiprime rings, Gulf Journal of Mathematics, 6(3), 25-32, 2018.
  • [15] Samman, M.S., Alyamani, N., Derivations on semiprime ring, International Journal of Pure and Applied Mathematics, 5(4), 469-477, 2003.

Some Commutativity Theorems on Lie Ideals of Semiprime Rings

Year 2020, , 548 - 556, 30.12.2020
https://doi.org/10.37094/adyujsci.638265

Abstract

In this paper, we show that any 𝑈 noncentral square closed Lie ideal of a 2 −torsion free semiprime ring 𝑅 contains a nonzero ideal. With this result, some theorems will be extended on the multiplicative generalized derivations of Lie ideals of semiprime rings.

References

  • [1] Bresar, M., On the distance of the composition of two derivations to be the generalized derivations, The Glasgow Mathematical Journal, 33, 89-93, 1991.
  • [2] Posner, E.C., Derivations in Prime Rings, Proceedings of the American Mathematical Society, 8, 1093-1100, 1957.
  • [3] Herstein, I.N., Topics in ring theory, University of Chicago Press, 1969.
  • [4] Martindale, W.S., When are multiplicative maps additive, Proceedings of the American Mathematical Society, 21, 695-698, 1969.
  • [5] Daif, M.N., When is a multiplicative derivation additive, International Journal of Mathematics and Mathematical Sciences, 14(3), 615-618, 1991.
  • [6] Goldman, H., Semrl, P ., Multiplicative derivations on C(X), Monatshefte für Mathematik, 121(3), 189-197, 1969.
  • [7] Daif, M. N., Tammam El-Sayiad, M.S., Multiplicative generalized derivations which are additive, East-West Journal of Mathematics, 9, 31-37, 1997.
  • [8] Dhara, B., Ali, S., On multiplicative (generalized)-derivation in prime and semiprime rings, Aequationes mathematicae, 86, 65-79, 2013.
  • [9] Eremita, D., Ilisevic, D., On additivity of centralizers, Bulletin of the Australian Mathematical Society, 74, 177-184, 2006.
  • [10] Ali, A., Dhara, B., Ali, F., Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe Journal of Mathematics and Statistics, 44, 1293-1306, 2015.
  • [11] Ali, S., Dhara, B., Dar, N.A., Khan, A.N., On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings, Beiträge zur Algebra und Geometrie, 56, 325-337, 2015.
  • [12] Koç, E., Gölbaşı, Ö., Multiplicative generalized derivations on Lie ideals in semiprime rings, Palastine Journal of Mathematics, 6, 219-227, 2017.
  • [13] Gölbaşı, Ö., Multiplicative generalized derivations on ideals in semiprime rings, Mathematica Slovaca, 66, 1285-1296, 2016.
  • [14] Huang, S., Derivations on Lie ideals of semiprime rings, Gulf Journal of Mathematics, 6(3), 25-32, 2018.
  • [15] Samman, M.S., Alyamani, N., Derivations on semiprime ring, International Journal of Pure and Applied Mathematics, 5(4), 469-477, 2003.
There are 15 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Zeliha Bedir 0000-0002-4346-2331

Öznur Gölbaşı 0000-0002-9338-6170

Publication Date December 30, 2020
Submission Date October 25, 2019
Acceptance Date December 2, 2020
Published in Issue Year 2020

Cite

APA Bedir, Z., & Gölbaşı, Ö. (2020). Some Commutativity Theorems on Lie Ideals of Semiprime Rings. Adıyaman University Journal of Science, 10(2), 548-556. https://doi.org/10.37094/adyujsci.638265
AMA Bedir Z, Gölbaşı Ö. Some Commutativity Theorems on Lie Ideals of Semiprime Rings. ADYU J SCI. December 2020;10(2):548-556. doi:10.37094/adyujsci.638265
Chicago Bedir, Zeliha, and Öznur Gölbaşı. “Some Commutativity Theorems on Lie Ideals of Semiprime Rings”. Adıyaman University Journal of Science 10, no. 2 (December 2020): 548-56. https://doi.org/10.37094/adyujsci.638265.
EndNote Bedir Z, Gölbaşı Ö (December 1, 2020) Some Commutativity Theorems on Lie Ideals of Semiprime Rings. Adıyaman University Journal of Science 10 2 548–556.
IEEE Z. Bedir and Ö. Gölbaşı, “Some Commutativity Theorems on Lie Ideals of Semiprime Rings”, ADYU J SCI, vol. 10, no. 2, pp. 548–556, 2020, doi: 10.37094/adyujsci.638265.
ISNAD Bedir, Zeliha - Gölbaşı, Öznur. “Some Commutativity Theorems on Lie Ideals of Semiprime Rings”. Adıyaman University Journal of Science 10/2 (December 2020), 548-556. https://doi.org/10.37094/adyujsci.638265.
JAMA Bedir Z, Gölbaşı Ö. Some Commutativity Theorems on Lie Ideals of Semiprime Rings. ADYU J SCI. 2020;10:548–556.
MLA Bedir, Zeliha and Öznur Gölbaşı. “Some Commutativity Theorems on Lie Ideals of Semiprime Rings”. Adıyaman University Journal of Science, vol. 10, no. 2, 2020, pp. 548-56, doi:10.37094/adyujsci.638265.
Vancouver Bedir Z, Gölbaşı Ö. Some Commutativity Theorems on Lie Ideals of Semiprime Rings. ADYU J SCI. 2020;10(2):548-56.

...