Research Article
BibTex RIS Cite
Year 2020, , 455 - 465, 30.12.2020
https://doi.org/10.37094/adyujsci.747927

Abstract

References

  • [1] Eggermont, L.J., Rogers, Z.J., Colombani, T., Memic, A., X Bencherif, A., Injectable cryogels for biomedical applications, Trends in Biotechnology, 2019.
  • [2] Offeddu, G.S., Mela, I., Jeggle, P., Henderson, R.M., Smoukov, S.K., Oyen, M.L., Cartilage-like electrostatic stiffening of responsive cryogel scaffolds, Scientific Reports, 7, 42948, 2017.
  • [3] Hixon, K.R., Lu, T., Sell, S.A., A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomaterialia, 62, 29-41, 2017.
  • [4] Henderson, T.M.A., Ladewig, K., Haylock, D.N., McLean, K.M., O’Connor, A.J., Cryogels for biomedical applications, Journal of Materials Chemistry B, 1(21), 2682-2695, 2013.
  • [5] Kennedy, S., Bencherif, S., Norton, D., Weinstock, L., Mehta, M., Mooney, D., Rapid and extensive collapse from electrically responsive macroporous hydrogels, Advanced Healthcare Materials, 3 500-507, 2014.
  • [6] Zhang, X., Yang, X., Chen, X., Zhang, M., Luo, L., Peng, M., Yao, S., Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation, Analytical and Bioanalytical Chemistry, 401(9), 2855-2863, 2011.
  • [7] Zhang, F., Wu, W., Zhang, X., Meng, X., Tong, G., Deng, Y., Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release, Cellulose, 23, 415-425, 2016.
  • [8] Dragan, E.S., Cocarta, A.I., Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs, ACS Applied Materials & Interfaces, 8, 12018-12030, 2016.
  • [9] Kirsebom, H., Topgaard, D., Galaev, I., Mattiasson, B., Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes, Langmuir, 26, 16129-16133, 2010.
  • [10] Jayaramudu, T., Ko, H.U., Kim, H.C., Kim, J.W., Muthoka, R.M., Kim, J., Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals, Materials, 11, 1615, 2018.
  • [11] Memic, A., Colombani, T., Eggermont, L.J., Rezaeeyazdi, M., Steingold, J., Rogers, Z.J., Navare, K.J., Mohammed, H.S., Bencherif, S.A., Latest advances in cryogel technology for biomedical applications, Advances in Therapy, 2, 1800114, 2019.
  • [12] Bereli, N., Andaç, M., Baydemir, G., Say, R., Galaev, I.Y., Denizli, A., Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, Journal of Chromatography A, 1190(1-2), 18-26, 2008.
  • [13] Bereli, N., Şener, G., Altıntaş, E.B., Yavuz, H., Denizli, A., Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G, Materials Science and Engineering C, 30(2), 323-329, 2010.
  • [14] Andaç, M., Galaev, I.Y., Denizli, A., Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, Journal of Chromatography B, 1021, 69-80, 2016.
  • [15] Abraham, S., Brahim, S., Ishihara, K., Guiseppi-Elie, A., Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility, Biomaterials, 26(23), 4767-4778, 2005.
  • [16] Özgür, E., Parlak, O., Beni, V., Turner, A.P.F., Uzun, L., Bioinspired design of a polymer-based biohybrid sensor interface, Sensors and Actuators B, 251, 674-682, 2017.
  • [17] Whitesides, G.M., Bioinspiration: something for everyone, Interface Focus, 5, 1-10, 2015.
  • [18] Zoulalian, V., Zürcher, S., Tosatti, S., Textor, M., Monge, S., Robin, J.-J., Self-assembly of poly(ethylene glycol)−poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability, Langmuir, 26 (1), 74-82, 2010.
  • [19] Licciardi, M., Tang, Y., Billingham, N. C., Armes, S. P., Lewis, A. L., Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs, Biomacromolecules, 6(2), 1085–1096, 2005.
  • [20] Gagner, J.E., Kim, W., Chaikof, E.L., Designing Protein-Based Biomaterials for Medical Applications, Acta Biomaterials, 10(4), 1542-1557, 2014.
  • [21] Goda, T., Kjall, P., Ishihara, K., Richter-Dahlfors, A., Miyahara, Y., Biomimetic interfaces reveal activation dynamics of C-reactive protein in local microenvironments, Advanced Healthcare Materials, 3(11), 1733-1738, 2014.
  • [22] Goda, T., Ishihara, K., Miyahara, Y., Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science, Journal of Applied Polymer Science, 132, 41766, 2015.
  • [23] Ishihara, K., Mu, M., Konno, T., Inoue, Y., Fukazawa, K., The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine), Journal of Biomaterials Science, Polymer Edition, 10–12, 884–899, 2017.
  • [24] Yuan, B., Chen, Q., Ding, W.-Q., Liu, P.-S., Wu, S.-S., Lin, S.-C., Shen, J., Gai, Y., Copolymer coatings consisting of 2‑methacryloyloxyethyl phosphorylcholine and 3‑methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility, ACS Applied Materials & Interfaces, 4, 4031-4039, 2012.
  • [25] Barthélémy, B., Maheux, S., Devillers, S., Kanoufi, F., Combellas, C., Delhalle, J., Mekhalif, Z., Synergistic effect on corrosion resistance of phynox substrates grafted with surface-initiated ATRP (Co)polymerization of 2‑Methacryloyloxyethyl Phosphorylcholine (MPC) and 2‑Hydroxyethyl Methacrylate (HEMA), ACS Applied Materials & Interfaces, 6, 10060-10071, 2014.
  • [26] Monge, S., Canniccioni, B., Graillot, A., Robin, J.-J., Phosphorus-containing polymers: a great opportunity for the biomedical field, Biomacromolecules, 12, 1973-1982, 2011.
  • [27] Berkowitz, M.L., Vacha, R., Aqueous solutions at the interface with phospholipid bilayers, Accounts of Chemical Research, 45, 74-82, 2012.
  • [28] Krylov, N.A., Pentkovsky, V.M., Efremov, R.G., Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations, ACS Nano, 7, 9428-9442, 2013.
  • [29] Schlenoff, J.B., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption, Langmuir, 30, 9625-9636, 2014.

Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes

Year 2020, , 455 - 465, 30.12.2020
https://doi.org/10.37094/adyujsci.747927

Abstract

Synthesis of artificial/natural polymeric biomaterials having resistance to nonspecific protein adsorption, blood coagulation and bacterial adhesion has attracted great attention, so nonspecific adsorption of proteins and biomolecules causes unfavorable biological responses inluding blood clotting, inflammation, cell adhesion, cell differentiation, and biofilm formation. A zwitterionic phosphorylcholine (PC) group of 2-methacryloyloxyethyl phosphorylcholine (MPC) is employed for biologically inert functions, especially in resistance to protein adsorption. So, it is aimed to develop bio-inspired, efficient and environmentally friendly MPC containing cryogel membranes for polymeric scaffolds for promoting cell-biomaterial. Cryogel membranes were synthesized in semi-frozen medium by free radical polymerization in an ice bath and characterized by SEM/EDX, micro-CT, and swelling ratio measurements. In vitro biocompatibility was assessed from cell viability studies performed using cultured fibroblast cells.

References

  • [1] Eggermont, L.J., Rogers, Z.J., Colombani, T., Memic, A., X Bencherif, A., Injectable cryogels for biomedical applications, Trends in Biotechnology, 2019.
  • [2] Offeddu, G.S., Mela, I., Jeggle, P., Henderson, R.M., Smoukov, S.K., Oyen, M.L., Cartilage-like electrostatic stiffening of responsive cryogel scaffolds, Scientific Reports, 7, 42948, 2017.
  • [3] Hixon, K.R., Lu, T., Sell, S.A., A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomaterialia, 62, 29-41, 2017.
  • [4] Henderson, T.M.A., Ladewig, K., Haylock, D.N., McLean, K.M., O’Connor, A.J., Cryogels for biomedical applications, Journal of Materials Chemistry B, 1(21), 2682-2695, 2013.
  • [5] Kennedy, S., Bencherif, S., Norton, D., Weinstock, L., Mehta, M., Mooney, D., Rapid and extensive collapse from electrically responsive macroporous hydrogels, Advanced Healthcare Materials, 3 500-507, 2014.
  • [6] Zhang, X., Yang, X., Chen, X., Zhang, M., Luo, L., Peng, M., Yao, S., Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation, Analytical and Bioanalytical Chemistry, 401(9), 2855-2863, 2011.
  • [7] Zhang, F., Wu, W., Zhang, X., Meng, X., Tong, G., Deng, Y., Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release, Cellulose, 23, 415-425, 2016.
  • [8] Dragan, E.S., Cocarta, A.I., Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs, ACS Applied Materials & Interfaces, 8, 12018-12030, 2016.
  • [9] Kirsebom, H., Topgaard, D., Galaev, I., Mattiasson, B., Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes, Langmuir, 26, 16129-16133, 2010.
  • [10] Jayaramudu, T., Ko, H.U., Kim, H.C., Kim, J.W., Muthoka, R.M., Kim, J., Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals, Materials, 11, 1615, 2018.
  • [11] Memic, A., Colombani, T., Eggermont, L.J., Rezaeeyazdi, M., Steingold, J., Rogers, Z.J., Navare, K.J., Mohammed, H.S., Bencherif, S.A., Latest advances in cryogel technology for biomedical applications, Advances in Therapy, 2, 1800114, 2019.
  • [12] Bereli, N., Andaç, M., Baydemir, G., Say, R., Galaev, I.Y., Denizli, A., Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, Journal of Chromatography A, 1190(1-2), 18-26, 2008.
  • [13] Bereli, N., Şener, G., Altıntaş, E.B., Yavuz, H., Denizli, A., Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G, Materials Science and Engineering C, 30(2), 323-329, 2010.
  • [14] Andaç, M., Galaev, I.Y., Denizli, A., Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, Journal of Chromatography B, 1021, 69-80, 2016.
  • [15] Abraham, S., Brahim, S., Ishihara, K., Guiseppi-Elie, A., Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility, Biomaterials, 26(23), 4767-4778, 2005.
  • [16] Özgür, E., Parlak, O., Beni, V., Turner, A.P.F., Uzun, L., Bioinspired design of a polymer-based biohybrid sensor interface, Sensors and Actuators B, 251, 674-682, 2017.
  • [17] Whitesides, G.M., Bioinspiration: something for everyone, Interface Focus, 5, 1-10, 2015.
  • [18] Zoulalian, V., Zürcher, S., Tosatti, S., Textor, M., Monge, S., Robin, J.-J., Self-assembly of poly(ethylene glycol)−poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability, Langmuir, 26 (1), 74-82, 2010.
  • [19] Licciardi, M., Tang, Y., Billingham, N. C., Armes, S. P., Lewis, A. L., Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs, Biomacromolecules, 6(2), 1085–1096, 2005.
  • [20] Gagner, J.E., Kim, W., Chaikof, E.L., Designing Protein-Based Biomaterials for Medical Applications, Acta Biomaterials, 10(4), 1542-1557, 2014.
  • [21] Goda, T., Kjall, P., Ishihara, K., Richter-Dahlfors, A., Miyahara, Y., Biomimetic interfaces reveal activation dynamics of C-reactive protein in local microenvironments, Advanced Healthcare Materials, 3(11), 1733-1738, 2014.
  • [22] Goda, T., Ishihara, K., Miyahara, Y., Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science, Journal of Applied Polymer Science, 132, 41766, 2015.
  • [23] Ishihara, K., Mu, M., Konno, T., Inoue, Y., Fukazawa, K., The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine), Journal of Biomaterials Science, Polymer Edition, 10–12, 884–899, 2017.
  • [24] Yuan, B., Chen, Q., Ding, W.-Q., Liu, P.-S., Wu, S.-S., Lin, S.-C., Shen, J., Gai, Y., Copolymer coatings consisting of 2‑methacryloyloxyethyl phosphorylcholine and 3‑methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility, ACS Applied Materials & Interfaces, 4, 4031-4039, 2012.
  • [25] Barthélémy, B., Maheux, S., Devillers, S., Kanoufi, F., Combellas, C., Delhalle, J., Mekhalif, Z., Synergistic effect on corrosion resistance of phynox substrates grafted with surface-initiated ATRP (Co)polymerization of 2‑Methacryloyloxyethyl Phosphorylcholine (MPC) and 2‑Hydroxyethyl Methacrylate (HEMA), ACS Applied Materials & Interfaces, 6, 10060-10071, 2014.
  • [26] Monge, S., Canniccioni, B., Graillot, A., Robin, J.-J., Phosphorus-containing polymers: a great opportunity for the biomedical field, Biomacromolecules, 12, 1973-1982, 2011.
  • [27] Berkowitz, M.L., Vacha, R., Aqueous solutions at the interface with phospholipid bilayers, Accounts of Chemical Research, 45, 74-82, 2012.
  • [28] Krylov, N.A., Pentkovsky, V.M., Efremov, R.G., Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations, ACS Nano, 7, 9428-9442, 2013.
  • [29] Schlenoff, J.B., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption, Langmuir, 30, 9625-9636, 2014.
There are 29 citations in total.

Details

Primary Language English
Journal Section Chemistry
Authors

Erdoğan Özgür 0000-0003-2494-4244

Publication Date December 30, 2020
Submission Date June 4, 2020
Acceptance Date November 11, 2020
Published in Issue Year 2020

Cite

APA Özgür, E. (2020). Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes. Adıyaman University Journal of Science, 10(2), 455-465. https://doi.org/10.37094/adyujsci.747927
AMA Özgür E. Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes. ADYU J SCI. December 2020;10(2):455-465. doi:10.37094/adyujsci.747927
Chicago Özgür, Erdoğan. “Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-Hydroxyethyl Methacrylate) P(HEMA) Cryogel Membranes”. Adıyaman University Journal of Science 10, no. 2 (December 2020): 455-65. https://doi.org/10.37094/adyujsci.747927.
EndNote Özgür E (December 1, 2020) Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes. Adıyaman University Journal of Science 10 2 455–465.
IEEE E. Özgür, “Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes”, ADYU J SCI, vol. 10, no. 2, pp. 455–465, 2020, doi: 10.37094/adyujsci.747927.
ISNAD Özgür, Erdoğan. “Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-Hydroxyethyl Methacrylate) P(HEMA) Cryogel Membranes”. Adıyaman University Journal of Science 10/2 (December 2020), 455-465. https://doi.org/10.37094/adyujsci.747927.
JAMA Özgür E. Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes. ADYU J SCI. 2020;10:455–465.
MLA Özgür, Erdoğan. “Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-Hydroxyethyl Methacrylate) P(HEMA) Cryogel Membranes”. Adıyaman University Journal of Science, vol. 10, no. 2, 2020, pp. 455-6, doi:10.37094/adyujsci.747927.
Vancouver Özgür E. Synthesis of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) Based P(2-hydroxyethyl methacrylate) P(HEMA) Cryogel Membranes. ADYU J SCI. 2020;10(2):455-6.

...