Research Article
BibTex RIS Cite
Year 2021, , 87 - 100, 30.06.2021
https://doi.org/10.37094/adyujsci.820698

Abstract

References

  • [1] Sipus, Z.M., Vladimir, V., The harmonic evolute of a surface in Minkowski 3-space, Mathematical Communications, 19, 43-55, 2014.
  • [2] Lopez, R., Sipus, Z.M., Gajcic, L.P., Protrka, I., Harmonic evolutes of B-scrolls with constant mean curvature in Lorentz-Minkowski space, International Journal of Geometric Methods in Modern Physics, 16 (5), 1950076, 2019.
  • [3] Körpinar, T., Kaymanli, G.U., On the harmonic evolute of quasi normal surfaces, Journal of Science and Arts, 1 (50), 55-64, 2020.
  • [4] Eren, K., Kösal, H.H., Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (3), 2027-2039, 2020.
  • [5] Kelleci, A., Eren, K., On evolution of some associated type ruled surfaces, Mathematical Sciences and Applications E-Notes, 8 (2), 178-186, 2020.
  • [6] Hasimoto, H., Motion of a vortex filament and its relation to elastica, Journal of the Physical Society of Japan, 31, 293-294, 1971.
  • [7] Hasimoto, H., A soliton on a vortex filament, Journal of Fluid Mechanics, 51 (3), 477-485, 1972.
  • [8] Rogers, C., Schief, W.K., Bäcklund and Darboux transformations, Cambridge University Press, 432, 2002.
  • [9] Abdel-All, N.H., Hussien, R.A., Youssef, T., Hasimoto surfaces, Life Science Journal, 9 (3), 556-560, 2012.
  • [10] Kelleci, A., Bektaş, M., Ergüt, M., The Hasimoto surface according to Bishop frame, Adıyaman University Journal of Science, 9 (1), 13-22, 2019.
  • [11] Erdoğdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Mathematical Physics, Analysis and Geometry, 17, 169-181, 2014.
  • [12] Çakmak, A., Öklid 3-uzayında Hasimoto yüzeylerinin paralel yüzeyleri, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7 (1), 125-132, 2018.

On the Harmonic Evolute Surfaces of Hasimoto Surfaces

Year 2021, , 87 - 100, 30.06.2021
https://doi.org/10.37094/adyujsci.820698

Abstract

In this study, firstly by considering the evolution of a moving space curve, we give some related definitions and some new results about Hasimoto surfaces in Euclidean 3-spaces. Secondly, we examine harmonic evolute surfaces of Hasimoto surfaces in Euclidean 3-spaces and also, we give some geometric properties of these type surfaces. Moreover, we express the properties of parameter curves of harmonic evolute surfaces in Euclidean space. Finally, we give an explicit example of Hasimoto surface and its harmonic evolute surface and also we plot these surfaces.

References

  • [1] Sipus, Z.M., Vladimir, V., The harmonic evolute of a surface in Minkowski 3-space, Mathematical Communications, 19, 43-55, 2014.
  • [2] Lopez, R., Sipus, Z.M., Gajcic, L.P., Protrka, I., Harmonic evolutes of B-scrolls with constant mean curvature in Lorentz-Minkowski space, International Journal of Geometric Methods in Modern Physics, 16 (5), 1950076, 2019.
  • [3] Körpinar, T., Kaymanli, G.U., On the harmonic evolute of quasi normal surfaces, Journal of Science and Arts, 1 (50), 55-64, 2020.
  • [4] Eren, K., Kösal, H.H., Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (3), 2027-2039, 2020.
  • [5] Kelleci, A., Eren, K., On evolution of some associated type ruled surfaces, Mathematical Sciences and Applications E-Notes, 8 (2), 178-186, 2020.
  • [6] Hasimoto, H., Motion of a vortex filament and its relation to elastica, Journal of the Physical Society of Japan, 31, 293-294, 1971.
  • [7] Hasimoto, H., A soliton on a vortex filament, Journal of Fluid Mechanics, 51 (3), 477-485, 1972.
  • [8] Rogers, C., Schief, W.K., Bäcklund and Darboux transformations, Cambridge University Press, 432, 2002.
  • [9] Abdel-All, N.H., Hussien, R.A., Youssef, T., Hasimoto surfaces, Life Science Journal, 9 (3), 556-560, 2012.
  • [10] Kelleci, A., Bektaş, M., Ergüt, M., The Hasimoto surface according to Bishop frame, Adıyaman University Journal of Science, 9 (1), 13-22, 2019.
  • [11] Erdoğdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Mathematical Physics, Analysis and Geometry, 17, 169-181, 2014.
  • [12] Çakmak, A., Öklid 3-uzayında Hasimoto yüzeylerinin paralel yüzeyleri, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7 (1), 125-132, 2018.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Kemal Eren 0000-0001-5273-7897

Alev Kelleci Akbay 0000-0003-2528-2131

Publication Date June 30, 2021
Submission Date November 3, 2020
Acceptance Date April 30, 2021
Published in Issue Year 2021

Cite

APA Eren, K., & Kelleci Akbay, A. (2021). On the Harmonic Evolute Surfaces of Hasimoto Surfaces. Adıyaman University Journal of Science, 11(1), 87-100. https://doi.org/10.37094/adyujsci.820698
AMA Eren K, Kelleci Akbay A. On the Harmonic Evolute Surfaces of Hasimoto Surfaces. ADYU J SCI. June 2021;11(1):87-100. doi:10.37094/adyujsci.820698
Chicago Eren, Kemal, and Alev Kelleci Akbay. “On the Harmonic Evolute Surfaces of Hasimoto Surfaces”. Adıyaman University Journal of Science 11, no. 1 (June 2021): 87-100. https://doi.org/10.37094/adyujsci.820698.
EndNote Eren K, Kelleci Akbay A (June 1, 2021) On the Harmonic Evolute Surfaces of Hasimoto Surfaces. Adıyaman University Journal of Science 11 1 87–100.
IEEE K. Eren and A. Kelleci Akbay, “On the Harmonic Evolute Surfaces of Hasimoto Surfaces”, ADYU J SCI, vol. 11, no. 1, pp. 87–100, 2021, doi: 10.37094/adyujsci.820698.
ISNAD Eren, Kemal - Kelleci Akbay, Alev. “On the Harmonic Evolute Surfaces of Hasimoto Surfaces”. Adıyaman University Journal of Science 11/1 (June 2021), 87-100. https://doi.org/10.37094/adyujsci.820698.
JAMA Eren K, Kelleci Akbay A. On the Harmonic Evolute Surfaces of Hasimoto Surfaces. ADYU J SCI. 2021;11:87–100.
MLA Eren, Kemal and Alev Kelleci Akbay. “On the Harmonic Evolute Surfaces of Hasimoto Surfaces”. Adıyaman University Journal of Science, vol. 11, no. 1, 2021, pp. 87-100, doi:10.37094/adyujsci.820698.
Vancouver Eren K, Kelleci Akbay A. On the Harmonic Evolute Surfaces of Hasimoto Surfaces. ADYU J SCI. 2021;11(1):87-100.

...