Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Al-Si-Mg Foam Produced by 3D Printer

Year 2018, Volume: 8 Issue: 1, 13 - 23, 30.06.2018

Abstract



Al89.5Si10Mg0.5 metallic foam was produced by 3D metal printer. The design
pattern has a triangular-like structure and it consists of aligned wires. The structure was
designed so that the distance between wires is 1 mm and the wire diameter is 1.2 mm.
X-ray results showed that sample has a cubic structure with nm grains. Also, detailed
element mapping indicated that sample has a homogenous distribution state of the
reinforcement throughout the Al matrix, which also a clear indication of single phase.
Compressive stress–strain curves shows the typical compressive behaviour of metallic
foams consists of a narrow linear elastic area followed by a plateau regime and then a
sharp increase.

References

  • References
  • [1] Banhart, J, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559, 2001.
  • [2] Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., Processing of biocompatible porous Ti and Mg, Scripta Materialia, 45, 1147, 2001.
  • [3] Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorenseni A. E., Lian, J., Greer, J. R., Valdevit, L., Carter, W. B., Ultralight Metallic Microlattices , Metallic Microlattices Science, 334, 962, 2011.
  • [4] Ubertalli, G., Ferraris, M., Bangash, M. K., Joining of AL-6016 to Al-foam using Zn-based joining materials, Composites Part A-Applied Science and Manufacturing, 96, 122, 2017.
  • [5] Giani, L., Groppi, G., Tronconi, E., Heat transfer characterization of metallic foams, Industrial & Engineering Chemistry Research, 44, 9078, 2005.
  • [6] Lefebvre, L. P., Banhart, J., Dunand, D. C., Porous Metals and Metallic Foams: Current Status and Recent Developments Advanced Engineering Materials, 10(9), 775, 2008.
  • [7] Kroupova, I., Bednarova, V., Elbel, T., F. Radkovsky, F., Proposal of Method Of Removal Of Mould Material From The Fine Structure Of Metallic Foams Used As Filters Archives of Metallurgy and Materials, 59(2), 727, 2014.
  • [8] Ashby, M. F., Lu, T. J., Metal foams: A survey, Science in China Series B-Chemistry, 46 (6), 521, 2003.
  • [9] Santosa, S., Wierzbicki, T., Crash behavior of box columns filled with aluminum honeycomb or foam, Computers & Structures, 68(4), 343, 1998.
  • [10] Taherishargh, M., Belova, I. V., Murch, G. E., Fiedler, T., Pumice/aluminium syntactic foam, Materials Science & Engineering A, 635, 102, 2015.
  • [11] Jinnapat, A. and Kennedy, A., The Manufacture and Characterisation of Aluminium Foams Made by Investment Casting Using Dissolvable Spherical Sodium Chloride Bead Preforms Metals 1, 49-64, 2011.
  • [12] Brothers, A. H., Dunand, D. C., Ductile bulk metallic glass foams Advanced Materials, 17(4), 484, 2005.
  • [13] Yang, S. F., Chiu, W. T., Wang, T. M., Chen, C. T., Tzeng, C. C., Porous materials produced from incineration ash using thermal plasma technology, Waste Management, 34, 1079 2014.
  • [14] Kroupova, I., Lichı, P., Radkovskı, F., Beoo, J., Bednáøová, V., Lána, I., Optimization of The Annealing of Plaster Moulds For the Manufacture of Metallic Foams With An Irregular Cell Structure, Materials and Technology, 49(4), 527, 2015.
  • [15] Sivashankar, S., Agambayev, S., Alamoudi, K., Buttner, U., Khashab, N., Salama, K. N., Compatibility analysis of 3D printer resin for biological applications, Micro & Nano Letters 11(10), 654, 2016.
  • [16] Gaal, G., Mendes, M., de Almeida, T. P., Piazetta, M. H. O., Gobbi, A. L., Riul, A., Rodrigues, V., Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing, Sensors and Actuators B-Chemical, 242, 35, 2017.
  • [17] Zhang, D., Chi, B. H., Li, B. W., Gao, Z. W., Du, Y., Guo, J. B., Wei, J., Fabrication of highly conductive graphene flexible circuits by 3D printing, Synthetic Metals, 217, 79, 2016.
  • [18] Andrews, E., Sanders, W., Gibson, L. J., Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering A, 270(2), 113, 1999.
  • [19] Ramamurty, U., Paul, A., Variability in mechanical properties of metal foam, Acta Materialia, 52(4), 869, 2004.
  • [20] Duos, E. B., Weisgraber, T. H., Hearon, K., Zhu, C., Small, W., Metz, W., Vericella, J. J., Barth, H. D., Kuntz, J. D., Maxwell, R. S., Spadaccini, C. M., Wilson, T. S., Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness Advanced Functional Materials, 24, 4905, 2014.
  • [21] Michailidis, N., Stergioudi, F., Tsouknidas, A., Deformation and energy absorption properties of powder-metallurgy produced Al foams, Materials Science and Engineering A, 528, 7222, 2011.
  • [22] Fathy, A., Abdelaziem, W., Hassan, M., Microstructure evolution and mechanical properties of Al/Al-12%Si multilayer processed by accumulative roll bonding (ARB), Materials Science and Engineering A, 647, 127-135, 2015.
  • [23] www.shapeways.com
  • [24] Atalay, S., Adiguzel, H. I., Atalay, F., Infrared absorption study of Fe2O3-CaO-SiO2 glass ceramics, Materials Science and Engineering A, 304, 796-799, 2001.

3D Yazıcı Tarafından Üretilen Al-Si-Mg Köpük

Year 2018, Volume: 8 Issue: 1, 13 - 23, 30.06.2018

Abstract



Al89.5Si10Mg0.5 metalik köpük 3D metal yazıcı ile üretildi. Tasarım deseni üçgen benzeri bir yapıya sahiptir ve hizalanmış tellerden oluşur. Yapı, teller arasındaki mesafe1 mm ve tel çapı 1.2 mm olacak şekilde tasarlanmıştır. X-ışını sonuçları numunenin nm tanecikli kübik bir yapıya sahip olduğunu gösterdi. Ayrıca, detaylı element haritalaması ile numunenin Al matrisi boyunca homojen bir dağılım durumuna sahip olduğunu ve aynı zamanda tek faza sahip olduğu belirtildi. Basınca bağlı gerilme-şekil değiştirme eğrileri, dar bir doğrusal elastik alan boyunca keskin bir artış meydana getirdiği, dolayısıyla bu da metalik köpüklerin tipik basınç davranışı özelliğini göstermektedir.

References

  • References
  • [1] Banhart, J, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559, 2001.
  • [2] Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., Processing of biocompatible porous Ti and Mg, Scripta Materialia, 45, 1147, 2001.
  • [3] Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorenseni A. E., Lian, J., Greer, J. R., Valdevit, L., Carter, W. B., Ultralight Metallic Microlattices , Metallic Microlattices Science, 334, 962, 2011.
  • [4] Ubertalli, G., Ferraris, M., Bangash, M. K., Joining of AL-6016 to Al-foam using Zn-based joining materials, Composites Part A-Applied Science and Manufacturing, 96, 122, 2017.
  • [5] Giani, L., Groppi, G., Tronconi, E., Heat transfer characterization of metallic foams, Industrial & Engineering Chemistry Research, 44, 9078, 2005.
  • [6] Lefebvre, L. P., Banhart, J., Dunand, D. C., Porous Metals and Metallic Foams: Current Status and Recent Developments Advanced Engineering Materials, 10(9), 775, 2008.
  • [7] Kroupova, I., Bednarova, V., Elbel, T., F. Radkovsky, F., Proposal of Method Of Removal Of Mould Material From The Fine Structure Of Metallic Foams Used As Filters Archives of Metallurgy and Materials, 59(2), 727, 2014.
  • [8] Ashby, M. F., Lu, T. J., Metal foams: A survey, Science in China Series B-Chemistry, 46 (6), 521, 2003.
  • [9] Santosa, S., Wierzbicki, T., Crash behavior of box columns filled with aluminum honeycomb or foam, Computers & Structures, 68(4), 343, 1998.
  • [10] Taherishargh, M., Belova, I. V., Murch, G. E., Fiedler, T., Pumice/aluminium syntactic foam, Materials Science & Engineering A, 635, 102, 2015.
  • [11] Jinnapat, A. and Kennedy, A., The Manufacture and Characterisation of Aluminium Foams Made by Investment Casting Using Dissolvable Spherical Sodium Chloride Bead Preforms Metals 1, 49-64, 2011.
  • [12] Brothers, A. H., Dunand, D. C., Ductile bulk metallic glass foams Advanced Materials, 17(4), 484, 2005.
  • [13] Yang, S. F., Chiu, W. T., Wang, T. M., Chen, C. T., Tzeng, C. C., Porous materials produced from incineration ash using thermal plasma technology, Waste Management, 34, 1079 2014.
  • [14] Kroupova, I., Lichı, P., Radkovskı, F., Beoo, J., Bednáøová, V., Lána, I., Optimization of The Annealing of Plaster Moulds For the Manufacture of Metallic Foams With An Irregular Cell Structure, Materials and Technology, 49(4), 527, 2015.
  • [15] Sivashankar, S., Agambayev, S., Alamoudi, K., Buttner, U., Khashab, N., Salama, K. N., Compatibility analysis of 3D printer resin for biological applications, Micro & Nano Letters 11(10), 654, 2016.
  • [16] Gaal, G., Mendes, M., de Almeida, T. P., Piazetta, M. H. O., Gobbi, A. L., Riul, A., Rodrigues, V., Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing, Sensors and Actuators B-Chemical, 242, 35, 2017.
  • [17] Zhang, D., Chi, B. H., Li, B. W., Gao, Z. W., Du, Y., Guo, J. B., Wei, J., Fabrication of highly conductive graphene flexible circuits by 3D printing, Synthetic Metals, 217, 79, 2016.
  • [18] Andrews, E., Sanders, W., Gibson, L. J., Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering A, 270(2), 113, 1999.
  • [19] Ramamurty, U., Paul, A., Variability in mechanical properties of metal foam, Acta Materialia, 52(4), 869, 2004.
  • [20] Duos, E. B., Weisgraber, T. H., Hearon, K., Zhu, C., Small, W., Metz, W., Vericella, J. J., Barth, H. D., Kuntz, J. D., Maxwell, R. S., Spadaccini, C. M., Wilson, T. S., Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness Advanced Functional Materials, 24, 4905, 2014.
  • [21] Michailidis, N., Stergioudi, F., Tsouknidas, A., Deformation and energy absorption properties of powder-metallurgy produced Al foams, Materials Science and Engineering A, 528, 7222, 2011.
  • [22] Fathy, A., Abdelaziem, W., Hassan, M., Microstructure evolution and mechanical properties of Al/Al-12%Si multilayer processed by accumulative roll bonding (ARB), Materials Science and Engineering A, 647, 127-135, 2015.
  • [23] www.shapeways.com
  • [24] Atalay, S., Adiguzel, H. I., Atalay, F., Infrared absorption study of Fe2O3-CaO-SiO2 glass ceramics, Materials Science and Engineering A, 304, 796-799, 2001.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Selçuk Atalay

Nevzat Bayri

Harun Kaya This is me

Tekin İzgi

Veli Serkan Kolat

Publication Date June 30, 2018
Submission Date January 25, 2018
Acceptance Date June 4, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Atalay, S., Bayri, N., Kaya, H., İzgi, T., et al. (2018). Al-Si-Mg Foam Produced by 3D Printer. Adıyaman University Journal of Science, 8(1), 13-23.
AMA Atalay S, Bayri N, Kaya H, İzgi T, Kolat VS. Al-Si-Mg Foam Produced by 3D Printer. ADYU J SCI. June 2018;8(1):13-23.
Chicago Atalay, Selçuk, Nevzat Bayri, Harun Kaya, Tekin İzgi, and Veli Serkan Kolat. “Al-Si-Mg Foam Produced by 3D Printer”. Adıyaman University Journal of Science 8, no. 1 (June 2018): 13-23.
EndNote Atalay S, Bayri N, Kaya H, İzgi T, Kolat VS (June 1, 2018) Al-Si-Mg Foam Produced by 3D Printer. Adıyaman University Journal of Science 8 1 13–23.
IEEE S. Atalay, N. Bayri, H. Kaya, T. İzgi, and V. S. Kolat, “Al-Si-Mg Foam Produced by 3D Printer”, ADYU J SCI, vol. 8, no. 1, pp. 13–23, 2018.
ISNAD Atalay, Selçuk et al. “Al-Si-Mg Foam Produced by 3D Printer”. Adıyaman University Journal of Science 8/1 (June 2018), 13-23.
JAMA Atalay S, Bayri N, Kaya H, İzgi T, Kolat VS. Al-Si-Mg Foam Produced by 3D Printer. ADYU J SCI. 2018;8:13–23.
MLA Atalay, Selçuk et al. “Al-Si-Mg Foam Produced by 3D Printer”. Adıyaman University Journal of Science, vol. 8, no. 1, 2018, pp. 13-23.
Vancouver Atalay S, Bayri N, Kaya H, İzgi T, Kolat VS. Al-Si-Mg Foam Produced by 3D Printer. ADYU J SCI. 2018;8(1):13-2.

...