Research Article
BibTex RIS Cite

Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach

Year 2019, Volume: 9 Issue: 1, 77 - 98, 28.06.2019

Abstract

Objectives: The research aimed
to develop a theoretical (QSAR) model for
predicting the activity of
1,2,4-Triazole derivatives as anti-tubercular
antagonist
.

Methods: Genetic function approximation (GFA) was employed
on a dataset of
1,2,4-Triazole derivatives to investigate their activities behavior on mycobacterium tuberculosis. This  approach led
to selection of the optimum descriptors and to generate the correlation QSAR
model that relate their activities
values against
mycobacterium
tuberculosis
with the molecular structures of the inhibitors.

Results: The built
model was validated and was found to have squared correlation coefficient (
R2)
of 0.9134
,
adjusted squared correlation
coefficient
(Radj) of 0.8753 and Leave one out (LOO) cross validation
coefficient (
) value of 0.8231. The external validation set used for
confirming the predictive power of the model has R2pred of 0.7482.









Conclusion:
Reliability, stability and robustness of the model obtained by the validation
test indicate that the model can be used to design and synthesis other
1,2,4-Triazole derivatives with improved anti-tubercular  activities.

References

  • References
  • [1] K. Lönnroth, K.G. Castro, J.M. Chakaya, L.S. Chauhan, K. Floyd, P. Glaziou, M.C. Raviglione, Tuberculosis control and elimination 2010–50: cure, care, and social development, The Lancet. 375 (2010) 1814–1829.[2] S.S. Jhamb, A. Goyal, P.P. Singh, Determination of the activity of standard anti-tuberculosis drugs against intramacrophage Mycobacterium tuberculosis, in vitro: MGIT 960 as a viable alternative for BACTEC 460, Braz. J. Infect. Dis. 18 (2014) 336–340.[3] M.A. Aziz, A. Wright, A. Laszlo, A. De Muynck, F. Portaels, A. Van Deun, C. Wells, P. Nunn, L. Blanc, M. Raviglione, WHO/International Union Against Tuberculosis And Lung Disease Global Project on Anti-tuberculosis Drug Resistance Surveillance. Epidemiology of antituberculosis drug resistance (the Global Project on Anti-tuberculosis Drug Resistance Surveillance): an upd, Lancet. 368 (2006) 2142–2154.[4] Y. Balabanova, M. Ruddy, J. Hubb, M. Yates, N. Malomanova, I. Fedorin, F. Drobniewski, Multidrug-resistant tuberculosis in Russia: clinical characteristics, analysis of second-line drug resistance and development of standardized therapy, Eur. J. Clin. Microbiol. Infect. Dis. 24 (2005) 136–139.[5] P.S. Abideen, K. Chandrasekaran, V.A. Uma Maheswaran, V. Kalaiselvan, others, Implementation of self reporting pharmacovigilance in anti tubercular therapy using knowledge based approach, J Pharmacovigil. 1 (2013) 2.[6] A. Yakar, F. Yakar, N. Yildiz, Z. K\il\içaslan, Isoniazid-and rifampicin-induced thrombocytopenia, Multidiscip. Respir. Med. 8 (2013) 13.[7] D. Sarkar, S.R. Deshpande, S.P. Maybhate, A.P. Likhite, S. Sarkar, A. Khan, P.M. Chaudhary, S.R. Chavan, 1, 2, 4-triazole derivatives and their anti-microbial activity, (2016).[8] E.C. Ibezim, P.R. Duchowicz, N.E. Ibezim, L.M.A. Mullen, I. V Onyishi, S.A. Brown, E.A. Castro, Computer-aided linear modeling employing QSAR for drug discovery, Sci. Res. Essays. 4 (2009) 1559–1564.[9] P. Singh, Quantitative Structure-Activity Relationship Study of Substituted-[1, 2, 4] Oxadiazoles as S1P1 Agonists, J. Curr. Chem. Pharm. Sci. 3 (2013).[10] R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, R.K. Agrawal, Validation of QSAR models-strategies and importance, Int. J. Drug Des. Discov. 3 (2011) 511–519.[11] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, Mol. Inform. 22 (2003) 69–77.

Genetik Fonksiyon Tahmin Yaklaşımı Kullanılarak Mycobacterium tuberculosis’e Karşı Bazı Etkili İnhibitörlerin Aktivite Modellemelerinin Yapılması

Year 2019, Volume: 9 Issue: 1, 77 - 98, 28.06.2019

Abstract

Amaç: Araştırma, anti-tüberküler antagonisti olarak
1,2,4-Triazol türevlerinin aktivitesini tahmin etmeye yönelik teorik (QSAR) bir
model geliştirmeyi amaçlamıştır.

Yöntem: Genetik fonksiyon yaklaşımı (GFA),
1,2,4-Triazol türevlerinin Mycobacterium tuberculosis üzerine etki
tarzlarını araştırmak amacıyla kullanılmıştır. Bu yaklaşım, optimum
tanımlayıcıların seçimine ve Mycobacterium tuberculosis üzerine etki
değerlerini inhibitörlerin moleküler yapılarıyla ilişkilendiren korelasyon QSAR
modelinin oluşturulmasına imkân vermiştir.

Sonuç: Oluşturulan model doğrulanmış ve korelasyon
katsayısının karesi (R2) 0.9134, düzeltilmiş korelasyon katsayısının
karesi (Radj) 0.8753 ve tek-çıkışlı (LOO) çapraz doğrulama katsayı (
) değeri 0.8231 olarak bulunmuştur.
Modelin öngörücü gücünü doğrulamak için kullanılan harici doğrulama seti,
0.7482
 'ye sahiptir.







Tartışma: Doğrulama testi ile elde edilen modelin güvenilirliği, kararlılığı ve
sağlamlığı, modelin, gelişmiş anti-füberküler aktivitesine sahip diğer
1,2,4-Triazol türevlerini tasarlamak ve sentezlemek için kullanılabileceğini
göstermektedir.

References

  • References
  • [1] K. Lönnroth, K.G. Castro, J.M. Chakaya, L.S. Chauhan, K. Floyd, P. Glaziou, M.C. Raviglione, Tuberculosis control and elimination 2010–50: cure, care, and social development, The Lancet. 375 (2010) 1814–1829.[2] S.S. Jhamb, A. Goyal, P.P. Singh, Determination of the activity of standard anti-tuberculosis drugs against intramacrophage Mycobacterium tuberculosis, in vitro: MGIT 960 as a viable alternative for BACTEC 460, Braz. J. Infect. Dis. 18 (2014) 336–340.[3] M.A. Aziz, A. Wright, A. Laszlo, A. De Muynck, F. Portaels, A. Van Deun, C. Wells, P. Nunn, L. Blanc, M. Raviglione, WHO/International Union Against Tuberculosis And Lung Disease Global Project on Anti-tuberculosis Drug Resistance Surveillance. Epidemiology of antituberculosis drug resistance (the Global Project on Anti-tuberculosis Drug Resistance Surveillance): an upd, Lancet. 368 (2006) 2142–2154.[4] Y. Balabanova, M. Ruddy, J. Hubb, M. Yates, N. Malomanova, I. Fedorin, F. Drobniewski, Multidrug-resistant tuberculosis in Russia: clinical characteristics, analysis of second-line drug resistance and development of standardized therapy, Eur. J. Clin. Microbiol. Infect. Dis. 24 (2005) 136–139.[5] P.S. Abideen, K. Chandrasekaran, V.A. Uma Maheswaran, V. Kalaiselvan, others, Implementation of self reporting pharmacovigilance in anti tubercular therapy using knowledge based approach, J Pharmacovigil. 1 (2013) 2.[6] A. Yakar, F. Yakar, N. Yildiz, Z. K\il\içaslan, Isoniazid-and rifampicin-induced thrombocytopenia, Multidiscip. Respir. Med. 8 (2013) 13.[7] D. Sarkar, S.R. Deshpande, S.P. Maybhate, A.P. Likhite, S. Sarkar, A. Khan, P.M. Chaudhary, S.R. Chavan, 1, 2, 4-triazole derivatives and their anti-microbial activity, (2016).[8] E.C. Ibezim, P.R. Duchowicz, N.E. Ibezim, L.M.A. Mullen, I. V Onyishi, S.A. Brown, E.A. Castro, Computer-aided linear modeling employing QSAR for drug discovery, Sci. Res. Essays. 4 (2009) 1559–1564.[9] P. Singh, Quantitative Structure-Activity Relationship Study of Substituted-[1, 2, 4] Oxadiazoles as S1P1 Agonists, J. Curr. Chem. Pharm. Sci. 3 (2013).[10] R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, R.K. Agrawal, Validation of QSAR models-strategies and importance, Int. J. Drug Des. Discov. 3 (2011) 511–519.[11] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, Mol. Inform. 22 (2003) 69–77.
There are 2 citations in total.

Details

Primary Language English
Journal Section Biology
Authors

Shola Elijah Adenıjı 0000-0002-7750-8174

Sani Uba This is me

Adamu Uzaıru This is me 0000-0002-6973-6361

Publication Date June 28, 2019
Submission Date August 3, 2018
Acceptance Date May 28, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Adenıjı, S. E., Uba, S., & Uzaıru, A. (2019). Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach. Adıyaman University Journal of Science, 9(1), 77-98.
AMA Adenıjı SE, Uba S, Uzaıru A. Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach. ADYU J SCI. June 2019;9(1):77-98.
Chicago Adenıjı, Shola Elijah, Sani Uba, and Adamu Uzaıru. “Activity Modeling of Some Potent Inhibitors Against Mycobacterium Tuberculosis Using Genetic Function Approximation Approach”. Adıyaman University Journal of Science 9, no. 1 (June 2019): 77-98.
EndNote Adenıjı SE, Uba S, Uzaıru A (June 1, 2019) Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach. Adıyaman University Journal of Science 9 1 77–98.
IEEE S. E. Adenıjı, S. Uba, and A. Uzaıru, “Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach”, ADYU J SCI, vol. 9, no. 1, pp. 77–98, 2019.
ISNAD Adenıjı, Shola Elijah et al. “Activity Modeling of Some Potent Inhibitors Against Mycobacterium Tuberculosis Using Genetic Function Approximation Approach”. Adıyaman University Journal of Science 9/1 (June 2019), 77-98.
JAMA Adenıjı SE, Uba S, Uzaıru A. Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach. ADYU J SCI. 2019;9:77–98.
MLA Adenıjı, Shola Elijah et al. “Activity Modeling of Some Potent Inhibitors Against Mycobacterium Tuberculosis Using Genetic Function Approximation Approach”. Adıyaman University Journal of Science, vol. 9, no. 1, 2019, pp. 77-98.
Vancouver Adenıjı SE, Uba S, Uzaıru A. Activity Modeling of Some Potent Inhibitors Against Mycobacterium tuberculosis Using Genetic Function Approximation Approach. ADYU J SCI. 2019;9(1):77-98.

...