Research Article
BibTex RIS Cite

Kuraklık Stresi Altındaki Biberiyenin (Rosmarinus officinalis) Uçucu Yağ Bileşenlerinin Zamana Bağlı Olarak Değişimi Üzerine Bir Çalışma

Year 2019, Volume: 9 Issue: 1, 165 - 189, 28.06.2019

Abstract

Bu çalışma ile birlikte, kuraklık stresi altındaki biberiyenin (Rosmarinus officinalis) uçucu yağ profilinde meydana gelen değişimler araştırılmıştır. Biberiye yaprağı örnekleri üç ardışık gün içerisinde toplanmış ve daha sonra kuraklık stresine maruz bırakılan bitkiler iyileştirme amaçlı sulanmıştır. Sonuç olarak GC-MS Headspace sistemi ile yapılan analize göre 26 bileşen belirlenmiştir. a-pinen, kamfen, β-pinen, β-myrcene, p-cymene, D-limonen, okaliptol ve kafur, tanımlanan bileşiklerin % 84, 874'ünü temsil eden ana bileşenler olarak belirlenmiştir. Bu bileşiklerin a-pinen, β-myrcene ve kafur yüzdesi kuraklıkla artmış, ancak β-pinen yüzdesi azalmıştır. Ayrıca, Zayıflatılmış Toplam Yansıma Fourier Dönüşümü Kızılötesi spektroskopisi kullanılarak biberiye yapraklarındaki lipit, amit ve karbonhidrat bölgelerinde meydana gelen değişimler de incelenmiştir. Lipitlere, amitlere ve karbonhidratlara karşılık gelen 2920 ila 2852, 1727 ila 1687 ve 1452 ila 1035 cm-1 bant yoğunluklarının sırasıyla CRD1, CRD2, CRD3, CD3, SD3, SRD1'de daha yüksek olduğu belirlenmiştir. Tüm deney grupları dikkate alındığında, kontrol grubunda lipit, amit ve karbonhidrat bant yoğunluklarının kısmen daha yüksek olduğu gözlenmiştir. Deney gruplarının ayrımı için varyans analizi, kümeleme analizi ve temel bileşen analizi yapılmıştır. Kuraklık ve sulanan (kontrol grubu) gruplar, ayırt edici istatistiksel araçlar kullanılarak doğru bir şekilde ayırt edilmiş ve doğrulanmıştır. Ayrıca değişen çevresel koşullara yanıt olarak metabolitlerin olası rolü ortaya konulmuştur.

References

  • References[1] Hamrouni, I., Salah, H. B., Marzouk, B., Effects of water-deficit on lipids of safflower aerial parts, Phytochem., 58, 277-80, 2001.[2] Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., Marzouk, B., Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition, Ind Crops Prod., 30, 372-379, 2009.[3] Sangwan, N. S., Farooqi, A. H. A., Shabih, F., Sangwan, R.S., Regulation of essential oil production in plants, Plant Growth Regul. 34, 3-21, 2001.[4] Kleinwächter, M., Paulsen, J., Bloem, E., Schnug, E., Selmar, D., Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum), Ind Crops Prod., 64, 158-166, 2015.[5] Szabó, K., Radácsi, P., Rajhárt, P., Ladányi, M., & Németh, É., Stress-induced changes of growth, yield and bioactive compounds in lemon balm cultivars, Plant Physiol Biochem. 119, 170-177, 2017.[6] Laribi, B., Kouki, K., Sahli, A., Mougou, A., Marzouk, B., Essential oil and fatty acid composition of a Tunisian caraway (Carum carvi L.) seed ecotype cultivated under water deficit, Adv. Environ. Biol., 257-265, 2011.[7] Bettaieb, I., Knioua, S., Hamrouni, I., Limam, F., Marzouk, B., Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts, J Agric Food Chem. 59, 328-334, 2011.[8] Baghalian, K., Abdoshah, S., Khalighi-Sigaroodi, F., Paknejad, F., Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.), Plant Physiol Biochem. 49, 201-207, 2011. [9] Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., Khalighi, A., The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). J. Med. Plants Res., 5, 5360-5365, 2011.[10] Corell, M., Garcia, M. C., Contreras, J. I., Segura, M. L., Cermeño, P., Effect of Water Stress on Salvia officinalis L. Bioproductivity and Its Bioelement Concentrations, Commun Soil Sci Plant Anal., 43, 419-425, 2012.[11] Bettaib-Rebey, I. B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., & Marzouk, B., Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds, Ind Crops Prod., 36(1), 238-245, 2012.[12] Farhoudi, R., Effect of drought stress on growth, physiology and flower essential oil yield of Iranian chamomile (Matricaria recutita L.) in south of Iran, Research on Crops, 13, 694-699, 2012.[13] Bahreininejad, B., Razmjoo, J., Mirza, M., Influence of water stress on morphophysiological and phytochemical traits in Thymus daenensis. Int J Plant Pro. 7, 151-166, 2013. [14] Yadav, R. K., Sangwan, R. S., Sabir, F., Srivastava, A. K., Sangwan, N. S., Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L., Plant Physiol Biochem.74, 70-83, 2014.[15] Bahreininejad, B., Razmjoo, J., Mirza, M., Effect of water stress on productivity and essential oil content and composition of Thymus carmanicus, J Essent Oil Bear Pl. 17, 717725, 2014.[16] Farhoudi, R., Lee, D. J., Hussain, M., Mild drought improves growth and flower oil productivity of German chamomile (Matricaria recutita L.), J Essent Oil Bear Pl. 17, 26-31, 2014.[17] Alinian, S., Razmjoo, J., Phenological, yield, essential oil yield and oil content of cumin accessions as affected by irrigation regimes, Ind Crops Prod., 54, 167-174, 2014.[18] Miguel, M.G., Guerrero, C., Rodrigues, H., Brito, J. "Essential oils of Rosmarinus officinalis L., effect of harvesting dates, growing media and fertilizers". In: Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July. Pp: 24–26, 2007.[19] Chahboun, N., Esmail, A., Rhaiem, N., Abed, H., Amiyare, R., Barrahi, M., ... & Ouhssine, M., Extraction and study of the essential oil Rosmarinus officinalis cuellie in the region of Taza, Morocco, Der Pharma Chem., 6(3), 367-372, 2014.[20] Zaouali, Y., C. Messaoud, A. Ben Salah and M. Boussaid, Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L, Flavour Fragrance J., 20 (5): 512-520, 2005.[21] Szumny, A., Figiel, A., Gutiérrez-Ortíz, A., Carbonell-Barrachina, Á. A., Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method, J Food Eng., 97(2), 253-260, 2010.[22] Farhoudi, R., Effect of drought stress on chemical constituents, photosynthesis and antioxidant properties of Rosmarinus officinalis essential oil, Journal of Medicinal Plants and By-Products, 2(1), 17-22, 2013.[23] Ogbaga, C. C., Miller, M. A., Johnson, G. N., Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates, Afr J Biotechnol., 16(18), 1061-1066, 2017.[24] Amir, R.M., Anjum, F.M., Khan, M.I., Khan, M.R., Pasha, I., Nadeem, M., Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties, J. Food Sci. Technol., 50,1018-1023, 2013.[25] Kuhnen S., Ogliari, J. B., Dias, P.F., Boffo, E. F., Correia, I., Ferreira, A.G., Delgadillo, I., Maraschin, M., ATR-FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in southern Brazil, Int. J. Food Sci., Technol., 45:16731681, 2010.[26] Yang, J., Yen, H. E., Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol., 130(2), 1032-1042, 2002.[27] Zhou, G., Taylor, G., Polle, A., FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars, Plant Methods, 7(1), 9, 2011.[28] Baciu, A., Ranga, F., Fetea, F., Zavoi, S., & Socaciu, C., Fingerprinting food supplements and their botanical ingredients by coupled UV/Vis/FTIR spectrometry. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 70(1), 8-15, 2013.[29] Lakshmi, C. N. D. M., Raju, B. D. P., Madhavi, T., & Sushma, N. J., Identification of bioactive compounds by FTIR analysis and in vitro antioxidant activity of Clitoria ternatea leaf and flower extracts, Indo Am. J. Pharm., 3894-3903, 2014.[30] Lakshmi, T., Ramasamy, R., Thirumalaikumaran, R. Preliminary Phytochemical analysis and In vitro Antioxidant, FTIR Spectroscopy, Anti-diabetic activity of Acacia catechu ethanolic seed extract, Pharmacogn Mag., 7(6), 356-362, 2015.[31] Lan, F., Kong, D., Li, Y., Huang, R., Studies on the changes of protein secondary structure and carbohydrate contents in seedling-stage of Abrus cantoniensis hance in drought stress based on FTIR and chemometrics, Pak. J. Bot, 47(4), 1311-1316, 2015. [32] Santos-Gomes, P. C., & Fernandes-Ferreira, M., Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites, J. Agric. Food Chem., 49(6), 2908-2916, 2001.[33] Taarit, M. B., Msaada, K., Hosni, K., & Marzouk, B., Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress, Food Chem, 119(3), 951-956, 2010.[34] Hassan, F. A. S., Bazaid, S., Ali, E. F. Effect of deficit irrigation on growth, yield and volatile oil content on Rosmarinus officinalis L. plant, J. Med. Plant. Stud, 1(3), 12-21, 2013.[35] Tounekti, T., Vadel, A. M., Bedoui, A., Khemira, H., NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.), Hortic Sci Biotechnol., 83(2), 267-273, 2008.[36] Langroudi, M. E., Sedaghathoor, S., Bidarigh, S., Effect of different salinity levels on the composition of rosemary (Rosmarinus officinalis) essential oils, Am. Eur. J. Agric. Environ. Sci, 13, 68-71, 2013.[37] Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., & Marzouk, B., Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hortic., 120(2), 271-275, 2009.[38] Petropoulos, S. A., Daferera, D., Polissiou, M. G., & Passam, H. C., The effect of water deficit stress on the growth, yield and composition of essential oils of parsley, Sci Hortic., 115(4), 393-397, 2008.[39] Zali, A. G., Ehsanzadeh, P., Szumny, A., Matkowski, A., Genotype-specific response of Foeniculum vulgare grain yield and essential oil composition to proline treatment under different irrigation conditions, Ind Crops Prod., 124, 177-185, 2018.[40] Baher, Z. F., Mirza, M., Ghorbanli, M., Bagher Rezaii, M., The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L., Flavour Fragr. J., 17(4), 275-277, 2002.[41] Khalid, K. A., Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.), Int. Agrophys, 20(4), 289-296, 2006.[42] Razavizadeh, R., Komatsu, S., Changes in essential oil and physiological parameters of callus and seedlings of Carum copticum L. under in vitro drought stress, Food Meas Charact., 1-12, 2018.[43] Toncer, O., Karaman, S., Kizil, S., & Diraz, E., Changes in essential oil composition of oregano (Origanum onites L.) due to diurnal variations at different development stages, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 177-181, 2009.[44] Cetinkaya, H., Kulak, M., Karaman, M., Karaman, H. S., & Kocer, F., Flavonoid Accumulation Behavior in Response to the Abiotic Stress: Can a Uniform Mechanism Be Illustrated for All Plants? In Flavonoids-From Biosynthesis to Human Health. InTech.,1, 151-165, 2017.[45] Selmar, D., Kleinwächter, M., Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants, Ind Crops Prod. 42, 558-566, 2013.[46] Tátrai, Z. A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F., Gianquinto, G., Morphological and physiological plant responses to drought stress in Thymus citriodorus. Int. J. Agron., 1-9, 2016.[47] Lahlali, R., Jiang, Y., Kumar, S., Karunakaran, C., Liu, X., Borondics, F., ... & Bueckert, R., ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance, Front Plant Sci., 5, 747, 2014.

A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress

Year 2019, Volume: 9 Issue: 1, 165 - 189, 28.06.2019

Abstract

Along with the present study, the changes in essential oil profile of rosemary (Rosmarinus officinalis) under drought stress were investigated. The leaf samples of rosemary were collected on three consecutive days and then the drought stressed groups were irrigated as recovery stage. Accordingly, 26 compounds were identified using gas-chromatography coupled with headspace system. Of the compounds, α-pinene, camphene, β-pinene, β-myrcene, p-cymene, D-limonene, eucalyptol, and camphor are of the major compounds, representing the 84.874 % of the identified compounds. Of those compounds, α-pinene, β-myrcene, and camphor percentage increased with the drought but the percentage of β-pinene decreased. Moreover, the changes in lipid, amide and carbohydrate regions for the samples were examined using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. The intensities: 2920 to 2852, 1727 to 1687 and 1452 to 1035 cm-1 bands corresponding to the lipids, amides, and carbohydrates, respectively were higher in CRD1, CRD2, CRD3, CD3, SD3, SRD1. Considered all experimental groups, the intensities were partially higher in control group. For the discrimination of the experimental groups, variance analysis, clustering analysis, and principal component analysis were performed. Drought and well-watered (control) groups were clearly discriminated and confirmed using differential statistical tools, suggesting the plausible role of metabolites in response to the changing environmental conditions.

References

  • References[1] Hamrouni, I., Salah, H. B., Marzouk, B., Effects of water-deficit on lipids of safflower aerial parts, Phytochem., 58, 277-80, 2001.[2] Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., Marzouk, B., Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition, Ind Crops Prod., 30, 372-379, 2009.[3] Sangwan, N. S., Farooqi, A. H. A., Shabih, F., Sangwan, R.S., Regulation of essential oil production in plants, Plant Growth Regul. 34, 3-21, 2001.[4] Kleinwächter, M., Paulsen, J., Bloem, E., Schnug, E., Selmar, D., Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum), Ind Crops Prod., 64, 158-166, 2015.[5] Szabó, K., Radácsi, P., Rajhárt, P., Ladányi, M., & Németh, É., Stress-induced changes of growth, yield and bioactive compounds in lemon balm cultivars, Plant Physiol Biochem. 119, 170-177, 2017.[6] Laribi, B., Kouki, K., Sahli, A., Mougou, A., Marzouk, B., Essential oil and fatty acid composition of a Tunisian caraway (Carum carvi L.) seed ecotype cultivated under water deficit, Adv. Environ. Biol., 257-265, 2011.[7] Bettaieb, I., Knioua, S., Hamrouni, I., Limam, F., Marzouk, B., Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts, J Agric Food Chem. 59, 328-334, 2011.[8] Baghalian, K., Abdoshah, S., Khalighi-Sigaroodi, F., Paknejad, F., Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.), Plant Physiol Biochem. 49, 201-207, 2011. [9] Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., Khalighi, A., The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). J. Med. Plants Res., 5, 5360-5365, 2011.[10] Corell, M., Garcia, M. C., Contreras, J. I., Segura, M. L., Cermeño, P., Effect of Water Stress on Salvia officinalis L. Bioproductivity and Its Bioelement Concentrations, Commun Soil Sci Plant Anal., 43, 419-425, 2012.[11] Bettaib-Rebey, I. B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., & Marzouk, B., Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds, Ind Crops Prod., 36(1), 238-245, 2012.[12] Farhoudi, R., Effect of drought stress on growth, physiology and flower essential oil yield of Iranian chamomile (Matricaria recutita L.) in south of Iran, Research on Crops, 13, 694-699, 2012.[13] Bahreininejad, B., Razmjoo, J., Mirza, M., Influence of water stress on morphophysiological and phytochemical traits in Thymus daenensis. Int J Plant Pro. 7, 151-166, 2013. [14] Yadav, R. K., Sangwan, R. S., Sabir, F., Srivastava, A. K., Sangwan, N. S., Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L., Plant Physiol Biochem.74, 70-83, 2014.[15] Bahreininejad, B., Razmjoo, J., Mirza, M., Effect of water stress on productivity and essential oil content and composition of Thymus carmanicus, J Essent Oil Bear Pl. 17, 717725, 2014.[16] Farhoudi, R., Lee, D. J., Hussain, M., Mild drought improves growth and flower oil productivity of German chamomile (Matricaria recutita L.), J Essent Oil Bear Pl. 17, 26-31, 2014.[17] Alinian, S., Razmjoo, J., Phenological, yield, essential oil yield and oil content of cumin accessions as affected by irrigation regimes, Ind Crops Prod., 54, 167-174, 2014.[18] Miguel, M.G., Guerrero, C., Rodrigues, H., Brito, J. "Essential oils of Rosmarinus officinalis L., effect of harvesting dates, growing media and fertilizers". In: Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July. Pp: 24–26, 2007.[19] Chahboun, N., Esmail, A., Rhaiem, N., Abed, H., Amiyare, R., Barrahi, M., ... & Ouhssine, M., Extraction and study of the essential oil Rosmarinus officinalis cuellie in the region of Taza, Morocco, Der Pharma Chem., 6(3), 367-372, 2014.[20] Zaouali, Y., C. Messaoud, A. Ben Salah and M. Boussaid, Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L, Flavour Fragrance J., 20 (5): 512-520, 2005.[21] Szumny, A., Figiel, A., Gutiérrez-Ortíz, A., Carbonell-Barrachina, Á. A., Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method, J Food Eng., 97(2), 253-260, 2010.[22] Farhoudi, R., Effect of drought stress on chemical constituents, photosynthesis and antioxidant properties of Rosmarinus officinalis essential oil, Journal of Medicinal Plants and By-Products, 2(1), 17-22, 2013.[23] Ogbaga, C. C., Miller, M. A., Johnson, G. N., Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates, Afr J Biotechnol., 16(18), 1061-1066, 2017.[24] Amir, R.M., Anjum, F.M., Khan, M.I., Khan, M.R., Pasha, I., Nadeem, M., Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties, J. Food Sci. Technol., 50,1018-1023, 2013.[25] Kuhnen S., Ogliari, J. B., Dias, P.F., Boffo, E. F., Correia, I., Ferreira, A.G., Delgadillo, I., Maraschin, M., ATR-FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in southern Brazil, Int. J. Food Sci., Technol., 45:16731681, 2010.[26] Yang, J., Yen, H. E., Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol., 130(2), 1032-1042, 2002.[27] Zhou, G., Taylor, G., Polle, A., FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars, Plant Methods, 7(1), 9, 2011.[28] Baciu, A., Ranga, F., Fetea, F., Zavoi, S., & Socaciu, C., Fingerprinting food supplements and their botanical ingredients by coupled UV/Vis/FTIR spectrometry. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 70(1), 8-15, 2013.[29] Lakshmi, C. N. D. M., Raju, B. D. P., Madhavi, T., & Sushma, N. J., Identification of bioactive compounds by FTIR analysis and in vitro antioxidant activity of Clitoria ternatea leaf and flower extracts, Indo Am. J. Pharm., 3894-3903, 2014.[30] Lakshmi, T., Ramasamy, R., Thirumalaikumaran, R. Preliminary Phytochemical analysis and In vitro Antioxidant, FTIR Spectroscopy, Anti-diabetic activity of Acacia catechu ethanolic seed extract, Pharmacogn Mag., 7(6), 356-362, 2015.[31] Lan, F., Kong, D., Li, Y., Huang, R., Studies on the changes of protein secondary structure and carbohydrate contents in seedling-stage of Abrus cantoniensis hance in drought stress based on FTIR and chemometrics, Pak. J. Bot, 47(4), 1311-1316, 2015. [32] Santos-Gomes, P. C., & Fernandes-Ferreira, M., Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites, J. Agric. Food Chem., 49(6), 2908-2916, 2001.[33] Taarit, M. B., Msaada, K., Hosni, K., & Marzouk, B., Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress, Food Chem, 119(3), 951-956, 2010.[34] Hassan, F. A. S., Bazaid, S., Ali, E. F. Effect of deficit irrigation on growth, yield and volatile oil content on Rosmarinus officinalis L. plant, J. Med. Plant. Stud, 1(3), 12-21, 2013.[35] Tounekti, T., Vadel, A. M., Bedoui, A., Khemira, H., NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.), Hortic Sci Biotechnol., 83(2), 267-273, 2008.[36] Langroudi, M. E., Sedaghathoor, S., Bidarigh, S., Effect of different salinity levels on the composition of rosemary (Rosmarinus officinalis) essential oils, Am. Eur. J. Agric. Environ. Sci, 13, 68-71, 2013.[37] Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., & Marzouk, B., Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hortic., 120(2), 271-275, 2009.[38] Petropoulos, S. A., Daferera, D., Polissiou, M. G., & Passam, H. C., The effect of water deficit stress on the growth, yield and composition of essential oils of parsley, Sci Hortic., 115(4), 393-397, 2008.[39] Zali, A. G., Ehsanzadeh, P., Szumny, A., Matkowski, A., Genotype-specific response of Foeniculum vulgare grain yield and essential oil composition to proline treatment under different irrigation conditions, Ind Crops Prod., 124, 177-185, 2018.[40] Baher, Z. F., Mirza, M., Ghorbanli, M., Bagher Rezaii, M., The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L., Flavour Fragr. J., 17(4), 275-277, 2002.[41] Khalid, K. A., Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.), Int. Agrophys, 20(4), 289-296, 2006.[42] Razavizadeh, R., Komatsu, S., Changes in essential oil and physiological parameters of callus and seedlings of Carum copticum L. under in vitro drought stress, Food Meas Charact., 1-12, 2018.[43] Toncer, O., Karaman, S., Kizil, S., & Diraz, E., Changes in essential oil composition of oregano (Origanum onites L.) due to diurnal variations at different development stages, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 177-181, 2009.[44] Cetinkaya, H., Kulak, M., Karaman, M., Karaman, H. S., & Kocer, F., Flavonoid Accumulation Behavior in Response to the Abiotic Stress: Can a Uniform Mechanism Be Illustrated for All Plants? In Flavonoids-From Biosynthesis to Human Health. InTech.,1, 151-165, 2017.[45] Selmar, D., Kleinwächter, M., Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants, Ind Crops Prod. 42, 558-566, 2013.[46] Tátrai, Z. A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F., Gianquinto, G., Morphological and physiological plant responses to drought stress in Thymus citriodorus. Int. J. Agron., 1-9, 2016.[47] Lahlali, R., Jiang, Y., Kumar, S., Karunakaran, C., Liu, X., Borondics, F., ... & Bueckert, R., ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance, Front Plant Sci., 5, 747, 2014.
There are 1 citations in total.

Details

Primary Language English
Journal Section Biology
Authors

Muhittin Kulak 0000-0003-3673-9221

Publication Date June 28, 2019
Submission Date October 30, 2018
Acceptance Date May 31, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Kulak, M. (2019). A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. Adıyaman University Journal of Science, 9(1), 165-189.
AMA Kulak M. A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. ADYU J SCI. June 2019;9(1):165-189.
Chicago Kulak, Muhittin. “A Time-Course Study on Essential Oil of Rosemary (Rosmarinus Officinalis) Under Drought Stress”. Adıyaman University Journal of Science 9, no. 1 (June 2019): 165-89.
EndNote Kulak M (June 1, 2019) A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. Adıyaman University Journal of Science 9 1 165–189.
IEEE M. Kulak, “A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress”, ADYU J SCI, vol. 9, no. 1, pp. 165–189, 2019.
ISNAD Kulak, Muhittin. “A Time-Course Study on Essential Oil of Rosemary (Rosmarinus Officinalis) Under Drought Stress”. Adıyaman University Journal of Science 9/1 (June 2019), 165-189.
JAMA Kulak M. A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. ADYU J SCI. 2019;9:165–189.
MLA Kulak, Muhittin. “A Time-Course Study on Essential Oil of Rosemary (Rosmarinus Officinalis) Under Drought Stress”. Adıyaman University Journal of Science, vol. 9, no. 1, 2019, pp. 165-89.
Vancouver Kulak M. A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. ADYU J SCI. 2019;9(1):165-89.

...